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Many Applications for Autonomous Swarms

Logistics Entertainment

Transportation Defense Data Collection



Motivation

The Problem in Focus:
* Large swarms robust/efficient, but hard to model/control

 Want to develop theoretical foundations for design heuristics

Aim to Answer Questions:
 How should large swarms move and communicate?
e \Which control architectures can achieve which behaviors?

 What are the attainable performance limits of these architectures?



Approach

* This work: what sorts of motion patterns are optimal?
* Looking at motion planning and control for tracking
* Using continuum models, optimal transport, optimal control

Objective
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Problem Formulation: Resource/Demand Densities

* Resource = controlled mobile agents (provides services)
« Demand = known entity (requires services)




Problem Formulation: Assignment

Monge Problem (Optimal Transport): inf J | M(x) — xH%Rt(x) dx S.1. MyR, = D,
Q2

* # denotes measure pushforward
» Minimizer Mg _, , is optimal assignment map

»  Minimum WZZ(RI, D)) is Wasserstein distance




Problem Formulation: Dynamic Model

* Tracking — want resources close to demand
« Control resource through velocity field V

Dynamics (Continuity Equation): J,R(x) = —V- (Rt(x) Vt(x))

Motion Cost: ”VtH%Z(Rt) ‘= JQ ”Vt(X)H%R;(X) dx



Formal Problem Statement

Given an initial resource distribution R, and demand trajectory D over [0,T], solve

R,V Jg

T
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Assignment Cost Motion Cost Dynamic Constraint

° |ntu|t|ve|y, “R ShOUId I Minimize cost over (R, V)
track D efficiently” '

 Trade-off parameter
controls relative
importance of costs

D constant in time —
regulation problem




Structural Features of Solution

Necessary Conditions for Optimality: | S |
Optimal velocity field is irrotational!

0.R. = —V - (RIVA R. = R.| Nonlinear two-point
o i ( tl boundary value PDE
oA, = =3IVAI3H31¢R.D)|  |Az=0

Détegnadsagadtory entedithizatgimfproinigierm

« Optimal solutions are noncausal: need to know D ahead of time
 Computationally expensive

« How to approach this?



Approach and Main Results

 Main tools: Otto calculus, calculus of variations, optimal control

Regulation

Tracking

1-D

Solutions fully characterized
(NecSys '22)

Solutions fully characterized
(TCNS ’25, in review)

n-D

Solutions fully characterized
(CDC ’23)

Ongoing work
(CDC 24, ...)

!

Solutions decouple by
linearized OT, causal
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Solutions
decouple by
monotone
assignment



Suboptimal Tracking With Model-Predictive Control

 Problem #1: Need to address noncausality

* ldea #1: use model to forecast demand trajectory, use forecasted trajectory In
necessary conditions in receding horizon scheme

* Problem #2: DOn’t have mod Ifogrgf mand

Causa COoI

____________________________________

* ldea #2: Usg statlﬁfefeea&tmg modet:

predictive
model

noncausal Vi

>l  plant >
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* (Also solves Problem #3: computational cost)
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Model-Predictive Control Simulations

t=0.000




Conclusion

Takeaways:
o Simplified models can provide insight and design heuristics

* | everaging geometric structure can be powerful

Future Work:
* Solving necessary conditions
 More sophisticated demand models

* |nvestigating resulting controllers
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Thanks to My Collaborators
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Thanks for Watching! Questions?

Personal Website Google Scholar
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