Tracking Control in The Wasserstein Space

SIAM Conference on Control and Its Applications Montreal, Canada July 30, 2025

Max Emerick (University of California, Santa Barbara)

Many Applications for Autonomous Swarms

Emergency Response

Logistics

Entertainment

Transportation

Defense

Data Collection

Motivation

The Problem in Focus:

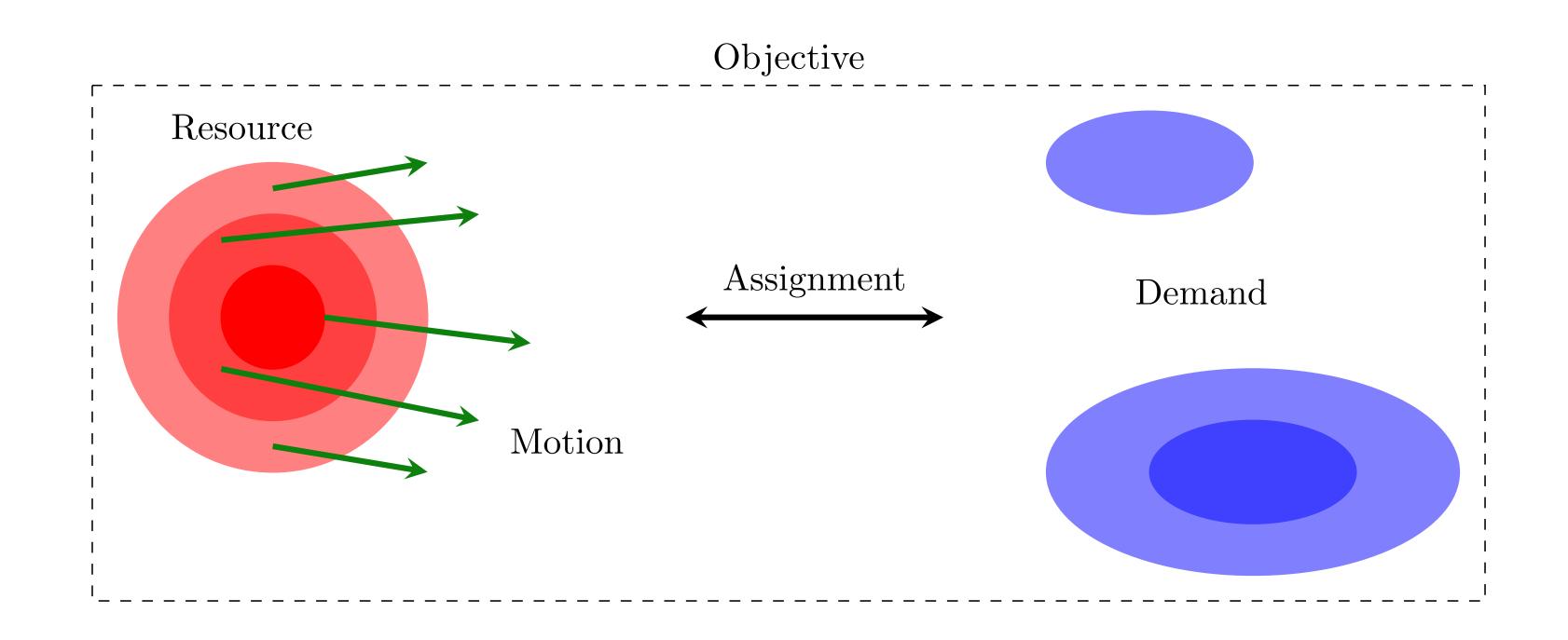
- Large swarms robust/efficient, but hard to model/control
- Want to develop theoretical foundations for design heuristics

Aim to Answer Questions:

- How should large swarms move and communicate?
- Which control architectures can achieve which behaviors?
- What are the attainable performance limits of these architectures?

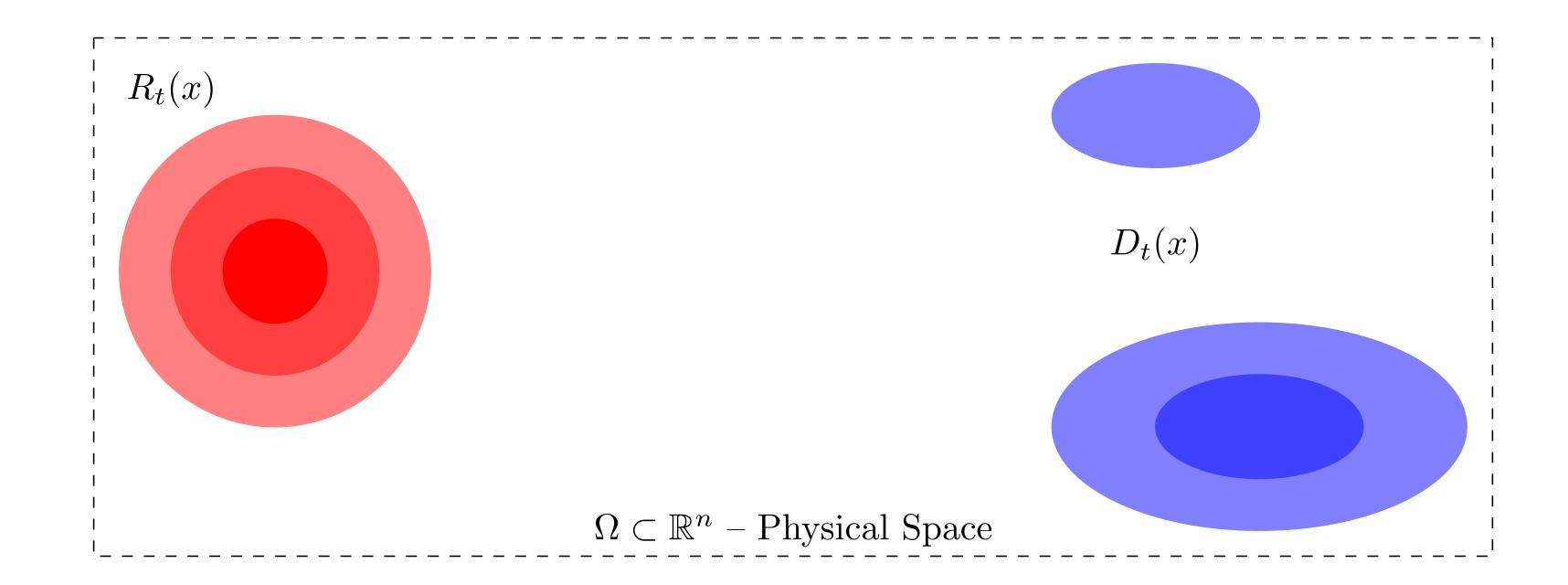
Approach

- This work: what sorts of motion patterns are optimal?
- Looking at motion planning and control for tracking
- Using continuum models, optimal transport, optimal control



Problem Formulation: Resource/Demand Densities

- Resource = controlled mobile agents (provides services)
- Demand = known entity (requires services)



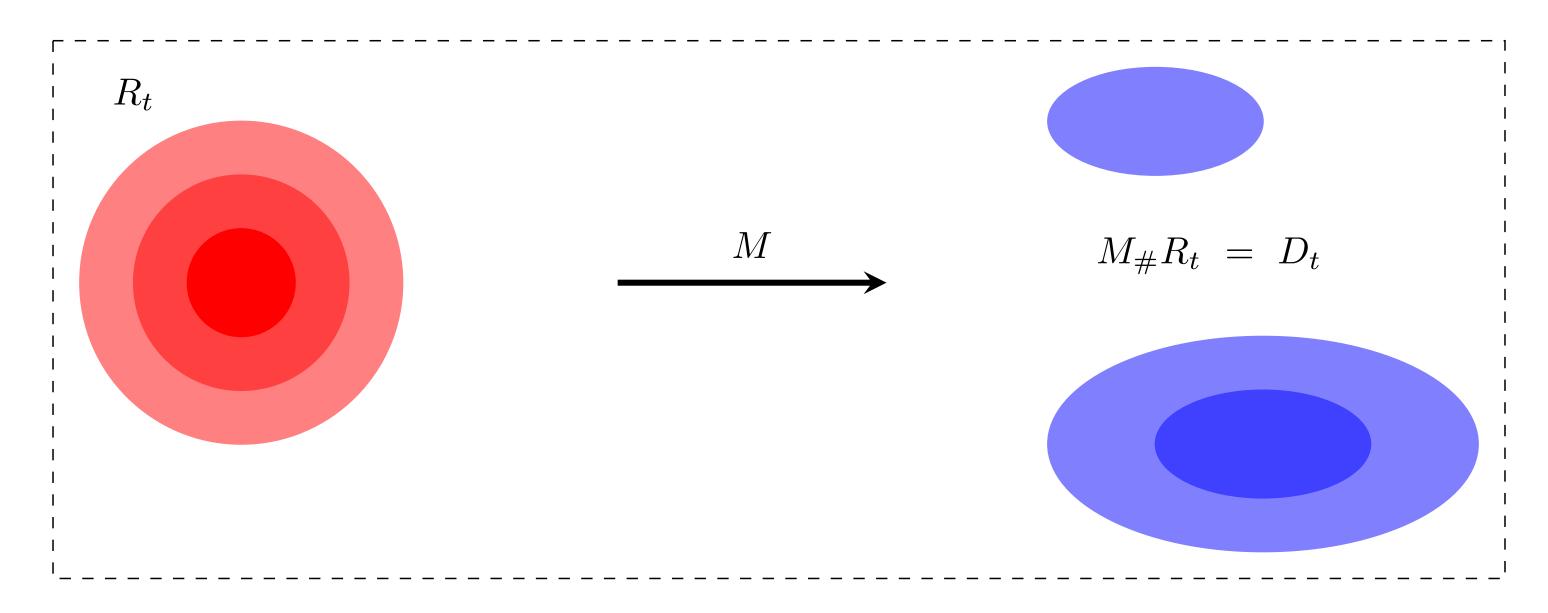
Problem Formulation: Assignment

Monge Problem (Optimal Transport):

$$\inf \int_{\Omega} ||M(x) - x||_2^2 R_t(x) dx \qquad \text{s.t.} \qquad M_\# R_t = D_t$$

$$M_{\#}R_t = D_t$$

- # denotes measure pushforward
- Minimizer $\bar{M}_{R_t o D_t}$ is optimal assignment map
- Minimum $W_2^2(R_t, D_t)$ is Wasserstein distance

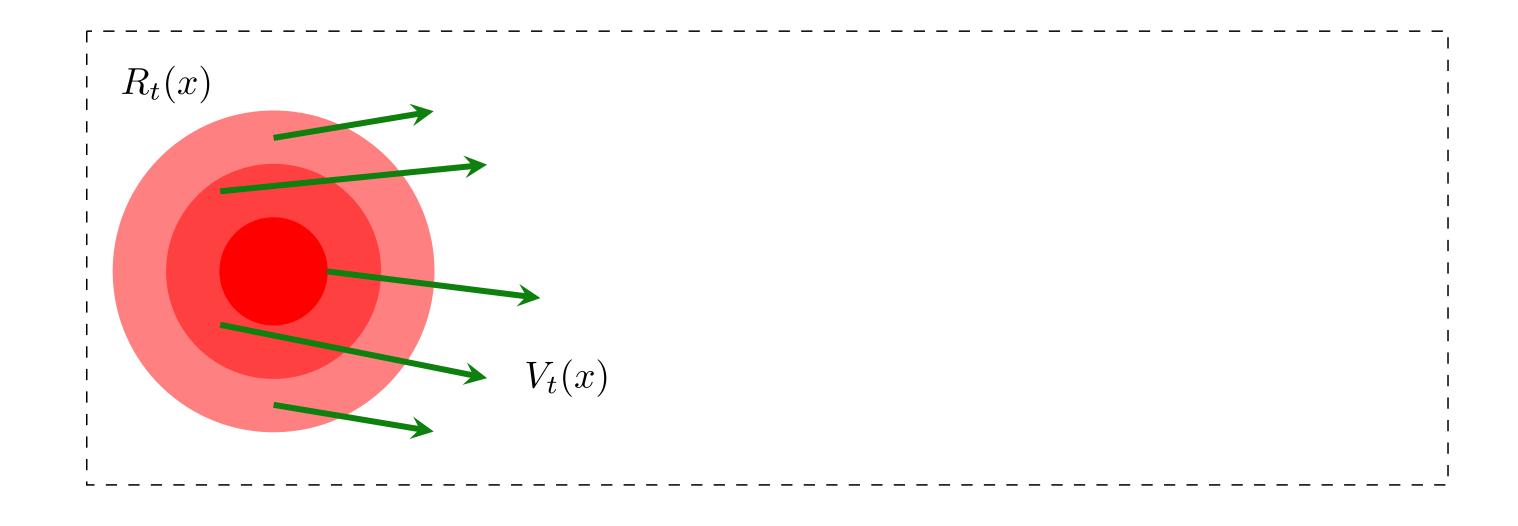


Problem Formulation: Dynamic Model

- Tracking → want resources close to demand
- ullet Control resource through **velocity field** V

Dynamics (Continuity Equation):

$$\partial_t R_t(x) = -\nabla \cdot (R_t(x) V_t(x))$$



Motion Cost:

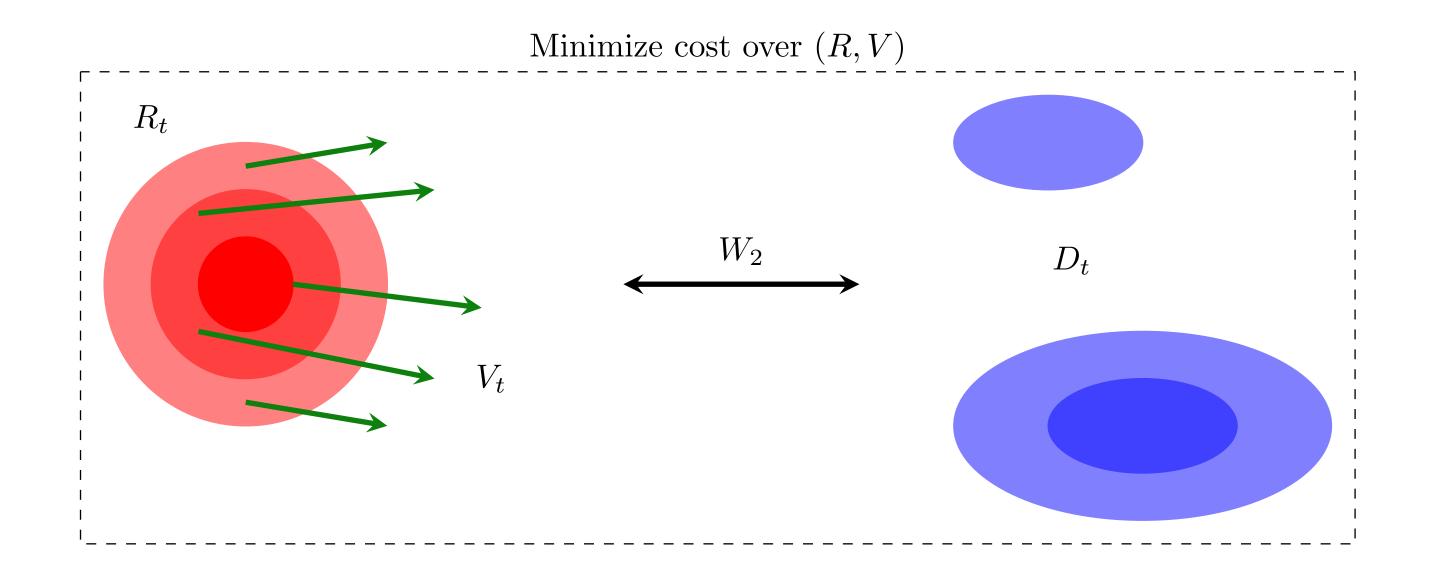
$$||V_t||_{L^2(R_t)}^2 := \int_{\Omega} ||V_t(x)||_2^2 R_t(x) dx$$

Formal Problem Statement

Given an initial resource distribution ${\it R}_0$ and demand trajectory ${\it D}$ over [0,T], solve

$$\inf_{R,V} \int_{0}^{T} \underbrace{W_{2}^{2}(R_{t},D_{t})}_{\text{Assignment Cost}} + \alpha \|V_{t}\|_{L^{2}(R_{t})}^{2} dt \qquad \text{s.t.} \qquad \underbrace{\partial_{t}R_{t} = -\nabla \cdot (R_{t}V_{t})}_{\text{Dynamic Constraint}}$$

- Intuitively, "R should track D efficiently"
- Trade-off parameter α controls relative importance of costs
- D constant in time → regulation problem



Structural Features of Solution

Necessary Conditions for Optimality:

Optimal velocity field is irrotational!

$$\partial_t R_t = -\nabla \cdot (R_t \nabla \Lambda_t)$$

$$\partial_t \Lambda_t = -\frac{1}{2} ||\nabla \Lambda_t||_2^2 + \frac{1}{2c} \phi(R_t, D_t)$$

$$R_0 = R_0$$
 Nonlinear two-point boundary value PDE

Derregnidesasedviong entepstithizationfprointerm

- ullet Optimal solutions are **noncausal:** need to know D ahead of time
- Computationally expensive
- How to approach this?

Approach and Main Results

Main tools: Otto calculus, calculus of variations, optimal control

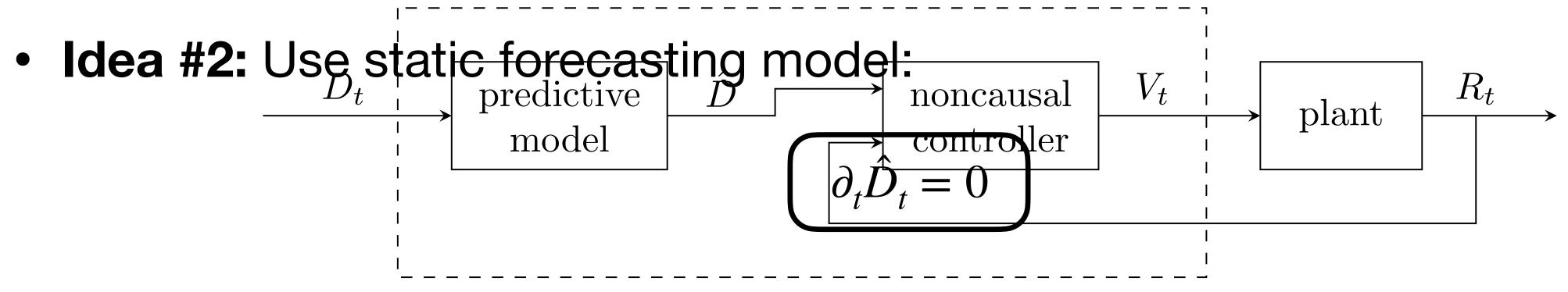
	Regulation	Tracking
1-D	Solutions fully characterized (NecSys '22)	Solutions fully characterized (TCNS '25, in review)
n-D	Solutions fully characterized (CDC '23)	Ongoing work (CDC '24,)

1

Solutions decouple by linearized OT, causal

Suboptimal Tracking With Model-Predictive Control

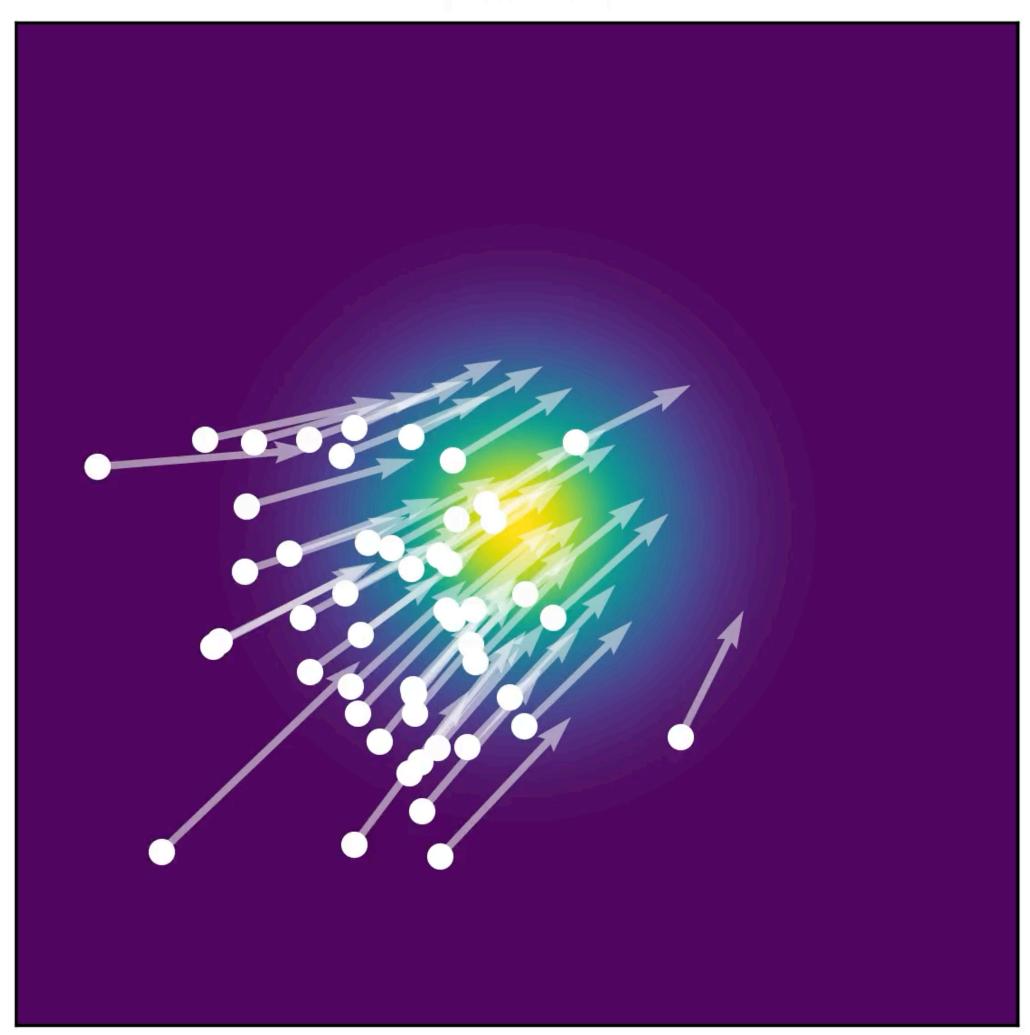
- Problem #1: Need to address noncausality
- Idea #1: use model to forecast demand trajectory, use forecasted trajectory in necessary conditions in receding horizon scheme
- Problem #2: Don't have model for demand



• (Also solves Problem #3: computational cost)

Model-Predictive Control Simulations

t = 0.000



Conclusion

Takeaways:

- Simplified models can provide insight and design heuristics
- Leveraging geometric structure can be powerful

Future Work:

- Solving necessary conditions
- More sophisticated demand models
- Investigating resulting controllers

Thanks to My Collaborators



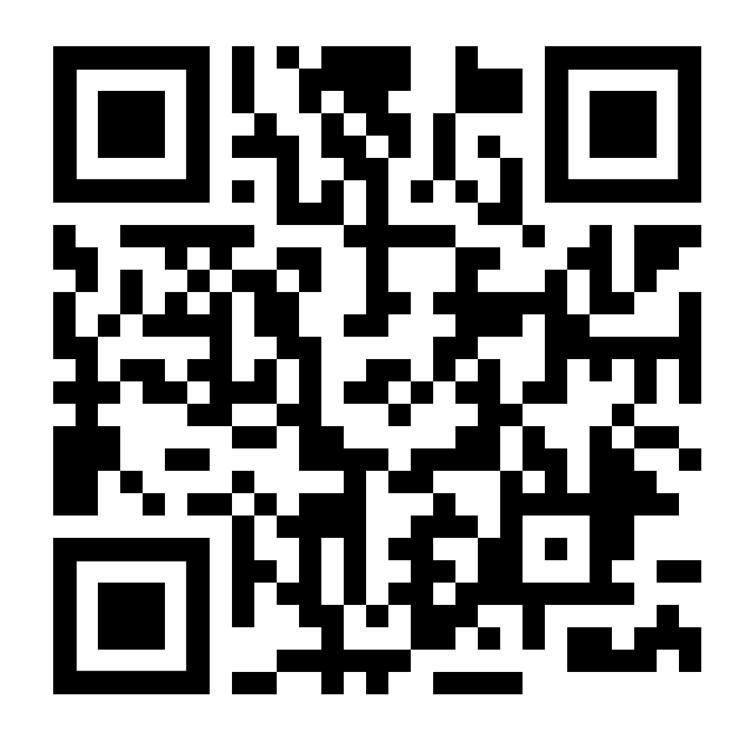
Bassam Bamieh

Stacy Patterson

Jared Jonas

Thanks for Watching! Questions?

Personal Website



Google Scholar

