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Many Applications for Autonomous Swarms
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LogisticsEmergency Response Entertainment

Transportation Defense Data Collection



Motivation

The Problem in Focus:


• Large swarms robust/efficient, but hard to model/control


• Want to develop theoretical foundations for design heuristics


Aim to Answer Questions:


• How should large swarms move and communicate?


• Which control architectures can achieve which behaviors?


• What are the attainable performance limits of these architectures?
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Approach
• This work: what sorts of motion patterns are optimal?

• Looking at motion planning and control for tracking

• Using continuum models, optimal transport, optimal control
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Problem Formulation: Resource/Demand Densities
• Resource = controlled mobile agents (provides services)

• Demand = known entity (requires services)
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Rt(x)

Dt(x)

⌦ ⇢ Rn – Physical Space



Problem Formulation: Assignment

• # denotes measure pushforward

• Minimizer  is optimal assignment map


• Minimum  is Wasserstein distance
M̄Rt→Dt

W2
2(Rt, Dt)
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Monge Problem (Optimal Transport): inf ∫Ω
∥M(x) − x∥2

2 Rt(x) dx s.t. M#Rt = Dt

Rt

M#Rt = DtM



Problem Formulation: Dynamic Model
• Tracking  want resources close to demand

• Control resource through velocity field 

→
V
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Dynamics (Continuity Equation): ∂t Rt(x) = − ∇ ⋅ (Rt(x) Vt(x))

Rt(x)

Vt(x)

Motion Cost: ∥Vt∥2
L2(Rt)

:= ∫
Ω

∥Vt(x)∥2
2 Rt(x) dx



Formal Problem Statement

• Intuitively, “  should 
track  efficiently”


• Trade-off parameter  
controls relative 
importance of costs


• D constant in time  
regulation problem

R
D

α

→

8

Given an initial resource distribution  and demand trajectory  over , solve R0 D [0,T]

inf
R,V ∫

T

0
W2

2(Rt, Dt)

Assignment Cost

+ α ∥Vt∥2
L2(Rt)

Motion Cost

dt s.t. ∂tRt = − ∇ ⋅ (Rt Vt)

Dynamic Constraint

W2

Rt

Dt

Vt

Minimize cost over (R, V )



Structural Features of Solution

• Optimal solutions are noncausal: need to know  ahead of time


• Computationally expensive


• How to approach this?

D
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Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α ϕ(Rt, Dt) ΛT = 0

Optimal velocity field is irrotational!
Nonlinear two-point

boundary value PDE 

Demand trajectory enters through forcing termRequires solving an optimization problem



Approach and Main Results

• Main tools: Otto calculus, calculus of variations, optimal control
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Regulation Tracking

1-D Solutions fully characterized

(NecSys ’22)

Solutions fully characterized

(TCNS ’25, in review)

n-D Solutions fully characterized

(CDC ’23)

Ongoing work

(CDC ’24, …)

Solutions 
decouple by 
monotone 
assignment

Solutions decouple by 
linearized OT, causal



Suboptimal Tracking With Model-Predictive Control

• Problem #1: Need to address noncausality


• Idea #1: use model to forecast demand trajectory, use forecasted trajectory in 
necessary conditions in receding horizon scheme


• Problem #2: Don’t have model for demand


• Idea #2: Use static forecasting model: 

11

∂tD̂t = 0

• (Also solves Problem #3: computational cost)

predictive
model

noncausal
controller

plant
Dt D̂ Vt Rt

causal controller



Model-Predictive Control Simulations
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Conclusion

Takeaways:


• Simplified models can provide insight and design heuristics


• Leveraging geometric structure can be powerful


Future Work:


• Solving necessary conditions


• More sophisticated demand models


• Investigating resulting controllers
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Thanks for Watching! Questions?
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