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Many Applications for Autonomous Swarms
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LogisticsEmergency Response Entertainment

Transportation Defense Data Collection



Motivation

The Problem in Focus:


• Large swarms robust/efficient, but hard to model/control


• Want to develop theoretical foundations for design heuristics


Aim to Answer Questions:


• How should large swarms move and communicate?


• Which control architectures can achieve which behaviors?


• What are the attainable performance limits of these architectures?
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Approach
• This work: what sorts of motion patterns are optimal?

• Looking at motion planning and control for tracking

• Using continuum models, optimal transport, optimal control
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Problem Formulation: Demand/Resource Distributions
• Demand = known entity (requires services)

• Resource = controlled mobile agents (provides services)
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Rt(x)

Dt(x)

⌦ ⇢ Rn – Physical Space



Problem Formulation: Assignment

• # denotes measure pushforward

• Minimizer  is optimal assignment map


• Minimum  is Wasserstein distance
M̄Rt→Dt

W2
2(Rt, Dt)
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Monge Problem (Optimal Transport): inf ∫Ω
∥M(x) − x∥2

2 Rt(x) dx s.t. M#Rt = Dt

Rt

M#Rt = DtM



Problem Formulation: Dynamic Model
• Tracking  want resources close to demand

• Control resource through velocity field 

→
V
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Dynamics (Transport Equation): ∂t Rt(x) = − ∇ ⋅ (Rt(x) Vt(x))

Rt(x)

Vt(x)

Motion Cost: ∥Vt∥2
L2(Rt)

:= ∫
Ω

∥Vt(x)∥2
2 Rt(x) dx



Formal Problem Statement

• Intuitively, “  should track  efficiently”

• Trade-off parameter  controls relative importance of costs

R D
α
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Given an initial resource distribution  and demand trajectory , solve R0 D

inf
R,V ∫

T

0
W2

2(Rt, Dt)

Assignment Cost

+ α ∥Vt∥2
L2(Rt)

Motion Cost

dt s.t. ∂tRt = − ∇ ⋅ (Rt Vt)

Dynamic Constraint

W2

Rt

Dt

Vt

Minimize cost over (R, V )



Structural Features of Solution
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Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0
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Necessary Conditions for Optimality:
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Optimal velocity field is irrotational!



Structural Features of Solution

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0
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Nonlinear two-point

boundary value PDE 



Structural Features of Solution
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Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Demand trajectory enters through forcing term



Structural Features of Solution

• Optimal solutions are noncausal: need to know  ahead of timeD
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Structural Features of Solution

• Optimal solutions are noncausal: need to know  ahead of timeD
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Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Requires solving an optimization problem



Structural Features of Solution

• Optimal solutions are noncausal: need to know  ahead of timeD

• Computational nightmare
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Structural Features of Solution

• Optimal solutions are noncausal: need to know  ahead of timeD

• Computational nightmare

• How to approach this?
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Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0



Simple Case: Regulation Problem

• Consider same problem with  constant in time


• (In this case, know future trajectory of !)
D

D
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inf
R,V ∫

T

0
W2

2(Rt, D) + α ∥Vt∥2
L2(Rt)

dt s.t. ∂tRt = − ∇ ⋅ (Rt Vt)

W2

Rt

Dt

Vt

Minimize cost over (R, V )



Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem


• Can show that  moves along Wasserstein geodesic towards :R D
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Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0



Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem


• Can show that  moves along Wasserstein geodesic towards :R D
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Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

Interpolation between identity and assignment map



Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem


• Can show that  moves along Wasserstein geodesic towards :R D
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Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

Assignment map comes from OT



Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem


• Can show that  moves along Wasserstein geodesic towards :R D
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Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

Time schedule  comes from OC problemσ



Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem


• Can show that  moves along Wasserstein geodesic towards :R D
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Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

• Can show assignments conserved  particle trajectories independent!→
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Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

• Can show assignments conserved  particle trajectories independent!→

• Gives form of optimal controller:
Vt = ·σ(t) (M̄Rt→D − I)



Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem


• Can show that  moves along Wasserstein geodesic towards :R D
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Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

• Can show assignments conserved  particle trajectories independent!→

• Gives form of optimal controller:
Vt = ·σ(t) (M̄Rt→D − I)

Error vector



Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem


• Can show that  moves along Wasserstein geodesic towards :R D
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Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

• Can show assignments conserved  particle trajectories independent!→

• Gives form of optimal controller:
Vt = ·σ(t) (M̄Rt→D − I)

Rate of traversal



Regulation Problem: Simulation
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Regulation Problem: Simulation
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Back to Tracking Problem
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Back to Tracking Problem

• Problem #1: Need to address noncausality
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Back to Tracking Problem

• Problem #1: Need to address noncausality

• Idea #1: use model to predict demand trajectory, use predicted trajectory in 
necessary conditions in receding horizon scheme
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predictive
model

noncausal
controller

plant
Dt D̂ Vt Rt

causal controller



Back to Tracking Problem

• Problem #1: Need to address noncausality

• Idea #1: use model to predict demand trajectory, use predicted trajectory in 
necessary conditions in receding horizon scheme

• Problem #2: Don’t have model for demand
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∂tD̂t = 0



Back to Tracking Problem

• Problem #1: Need to address noncausality

• Idea #1: use model to predict demand trajectory, use predicted trajectory in 
necessary conditions in receding horizon scheme

• Problem #2: Don’t have model for demand

• Idea #2: Use static predictive model: 
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∂tD̂t = 0

• (Also solves Problem #3: computational cost)



MPC Algorithm for Time-Varying Demands

• Predict that future demand = current demand

• Compute optimal control, apply for  seconds

• Update demand and repeat

Δt
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• Resulting controller has form:

Vt ≈ ·σ(t) (M̄Rt→Dt
− I)
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MPC Algorithm for Time-Varying Demands

• Predict that future demand = current demand

• Compute optimal control, apply for  seconds

• Update demand and repeat

Δt
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• Resulting controller has form:

• Heuristic, not optimal in general
• But, can be applied in real-time

Vt ≈ ·σ(t) (M̄Rt→Dt
− I)



MPC Algorithm: Simulations
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MPC Algorithm: Simulations
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Conclusion

Takeaways:


• Simplified models can provide insight and design heuristics


• Leveraging geometric structure can be powerful


Future Work:


• Solving necessary conditions


• More sophisticated demand models


• Investigating resulting controllers
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Thanks to My Collaborators
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Thanks for watching! 

Questions?
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