
Max Emerick (UC Santa Barbara, Advisor: Bassam Bamieh)

Tracking Control in the Wasserstein Space

44th SoCal Control Workshop
November 1, 2024

1

Many Applications for Autonomous Swarms

2

LogisticsEmergency Response Entertainment

Transportation Defense Data Collection

Motivation

The Problem in Focus:

• Large swarms robust/efficient, but hard to model/control

• Want to develop theoretical foundations for design heuristics

Aim to Answer Questions:

• How should large swarms move and communicate?

• Which control architectures can achieve which behaviors?

• What are the attainable performance limits of these architectures?

3

Approach
• This work: what sorts of motion patterns are optimal?

• Looking at motion planning and control for tracking

• Using continuum models, optimal transport, optimal control

4

Resource

Demand

Motion

Assignment

Objective

Problem Formulation: Demand/Resource Distributions
• Demand = known entity (requires services)

• Resource = controlled mobile agents (provides services)

5

Rt(x)

Dt(x)

⌦ ⇢ Rn – Physical Space

Problem Formulation: Assignment

• # denotes measure pushforward

• Minimizer is optimal assignment map

• Minimum is Wasserstein distance
M̄Rt→Dt

W2
2(Rt, Dt)

6

Monge Problem (Optimal Transport): inf ∫Ω
∥M(x) − x∥2

2 Rt(x) dx s.t. M#Rt = Dt

Rt

M#Rt = DtM

Problem Formulation: Dynamic Model
• Tracking want resources close to demand

• Control resource through velocity field

→
V

7

Dynamics (Transport Equation): ∂t Rt(x) = − ∇ ⋅ (Rt(x) Vt(x))

Rt(x)

Vt(x)

Motion Cost: ∥Vt∥2
L2(Rt)

:= ∫
Ω

∥Vt(x)∥2
2 Rt(x) dx

Formal Problem Statement

• Intuitively, “ should track efficiently”

• Trade-off parameter controls relative importance of costs

R D
α

8

Given an initial resource distribution and demand trajectory , solve R0 D

inf
R,V ∫

T

0
W2

2(Rt, Dt)

Assignment Cost

+ α ∥Vt∥2
L2(Rt)

Motion Cost

dt s.t. ∂tRt = − ∇ ⋅ (Rt Vt)

Dynamic Constraint

W2

Rt

Dt

Vt

Minimize cost over (R, V)

Structural Features of Solution

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Structural Features of Solution

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Optimal velocity field is irrotational!

Structural Features of Solution

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Nonlinear two-point

boundary value PDE

Structural Features of Solution

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Demand trajectory enters through forcing term

Structural Features of Solution

• Optimal solutions are noncausal: need to know ahead of timeD

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Structural Features of Solution

• Optimal solutions are noncausal: need to know ahead of timeD

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Requires solving an optimization problem

Structural Features of Solution

• Optimal solutions are noncausal: need to know ahead of timeD

• Computational nightmare

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Structural Features of Solution

• Optimal solutions are noncausal: need to know ahead of timeD

• Computational nightmare

• How to approach this?

9

Necessary Conditions for Optimality:

∂tRt = − ∇ ⋅ (Rt ∇Λt) R0 = R0

∂tΛt = − 1
2 ∥∇Λt∥2

2 + 1
2α

δ
δRt

W2
2(Rt, Dt) ΛT = 0

Simple Case: Regulation Problem

• Consider same problem with constant in time

• (In this case, know future trajectory of !)
D

D

10

inf
R,V ∫

T

0
W2

2(Rt, D) + α ∥Vt∥2
L2(Rt)

dt s.t. ∂tRt = − ∇ ⋅ (Rt Vt)

W2

Rt

Dt

Vt

Minimize cost over (R, V)

Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem

• Can show that moves along Wasserstein geodesic towards :R D

11

Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem

• Can show that moves along Wasserstein geodesic towards :R D

11

Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

Interpolation between identity and assignment map

Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem

• Can show that moves along Wasserstein geodesic towards :R D

11

Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

Assignment map comes from OT

Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem

• Can show that moves along Wasserstein geodesic towards :R D

11

Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

Time schedule comes from OC problemσ

Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem

• Can show that moves along Wasserstein geodesic towards :R D

11

Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

• Can show assignments conserved particle trajectories independent!→

Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem

• Can show that moves along Wasserstein geodesic towards :R D

11

Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

• Can show assignments conserved particle trajectories independent!→

• Gives form of optimal controller:
Vt = ·σ(t) (M̄Rt→D − I)

Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem

• Can show that moves along Wasserstein geodesic towards :R D

11

Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

• Can show assignments conserved particle trajectories independent!→

• Gives form of optimal controller:
Vt = ·σ(t) (M̄Rt→D − I)

Error vector

Fact: Wasserstein Space = Riemannian Manifold
• Leverage geometric structure to solve problem

• Can show that moves along Wasserstein geodesic towards :R D

11

Rt = [(1 − σ(t)) I + σ(t) M̄R0→D]#
R0

• Can show assignments conserved particle trajectories independent!→

• Gives form of optimal controller:
Vt = ·σ(t) (M̄Rt→D − I)

Rate of traversal

Regulation Problem: Simulation

12

Regulation Problem: Simulation

12

Back to Tracking Problem

13

Back to Tracking Problem

• Problem #1: Need to address noncausality

13

Back to Tracking Problem

• Problem #1: Need to address noncausality

• Idea #1: use model to predict demand trajectory, use predicted trajectory in
necessary conditions in receding horizon scheme

13

predictive
model

noncausal
controller

plant
Dt D̂ Vt Rt

causal controller

Back to Tracking Problem

• Problem #1: Need to address noncausality

• Idea #1: use model to predict demand trajectory, use predicted trajectory in
necessary conditions in receding horizon scheme

• Problem #2: Don’t have model for demand

13

Back to Tracking Problem

• Problem #1: Need to address noncausality

• Idea #1: use model to predict demand trajectory, use predicted trajectory in
necessary conditions in receding horizon scheme

• Problem #2: Don’t have model for demand

• Idea #2: Use static predictive model:

13

∂tD̂t = 0

Back to Tracking Problem

• Problem #1: Need to address noncausality

• Idea #1: use model to predict demand trajectory, use predicted trajectory in
necessary conditions in receding horizon scheme

• Problem #2: Don’t have model for demand

• Idea #2: Use static predictive model:

13

∂tD̂t = 0

• (Also solves Problem #3: computational cost)

MPC Algorithm for Time-Varying Demands

• Predict that future demand = current demand

• Compute optimal control, apply for seconds

• Update demand and repeat

Δt

14

MPC Algorithm for Time-Varying Demands

• Predict that future demand = current demand

• Compute optimal control, apply for seconds

• Update demand and repeat

Δt

14

• Resulting controller has form:

Vt ≈ ·σ(t) (M̄Rt→Dt
− I)

MPC Algorithm for Time-Varying Demands

• Predict that future demand = current demand

• Compute optimal control, apply for seconds

• Update demand and repeat

Δt

14

• Resulting controller has form:

• Heuristic, not optimal in general

Vt ≈ ·σ(t) (M̄Rt→Dt
− I)

MPC Algorithm for Time-Varying Demands

• Predict that future demand = current demand

• Compute optimal control, apply for seconds

• Update demand and repeat

Δt

14

• Resulting controller has form:

• Heuristic, not optimal in general
• But, can be applied in real-time

Vt ≈ ·σ(t) (M̄Rt→Dt
− I)

MPC Algorithm: Simulations

15

MPC Algorithm: Simulations

15

Conclusion

Takeaways:

• Simplified models can provide insight and design heuristics

• Leveraging geometric structure can be powerful

Future Work:

• Solving necessary conditions

• More sophisticated demand models

• Investigating resulting controllers

16

Thanks to My Collaborators

17

Bassam Bamieh Jared Jonas

Thanks for watching!

Questions?

18

