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Introduction and Motivation

Autonomous swarms being developed for many applications:

Large swarms robust and efficient but hard to manage:

Discrete Models
→

Continuum Models

In order, images taken from https://dronenodes.com/firefighter-drones/,
https://www.independent.co.uk/tech/amazon-drone-delivery-prime-air-faa-a9699351.html,
https://stpetepier.org/anniversary/, https://www.rotordronepro.com/drone-swarm/ without permission.
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Approach and Contributions

The Problem:

Motion planning/control for large swarms

Based on continuum model

Uses tools from optimal transport theory (assignments)

Related Work:

Bandyopadhyay et. al. [1]

Krishnan and Mart́ınez [2]

Inoue et. al. [3]

Limited objectives/constraints → optimal control theory (motion)

Key Contributions:

Introduce novel model for swarm control

Reparameterization and analytic solution in 1D
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Demand and Resource Distributions

Demand = known signal, requires services
Resource = state of swarm, provides services
Example: drones surveying wildfire

Dt(x) = d(x , t) +

Nd∑

k=1

dk(t) δ
(
x − γk(t)

)

Rt(x) = r(x , t)︸ ︷︷ ︸
continuous
component

+
Nr∑

k=1

rk(t) δ
(
x − ηk(t)

)

︸ ︷︷ ︸
discrete component

Rt

Dt

Ω ⊂ Rn – Physical Space
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Assignment Kernel

Kantorovich Problem (Optimal Transport)

W2
2(Rt ,Dt)︸ ︷︷ ︸

assignment
cost

= min
K

∫

Ω×Ω
|y − x |2︸ ︷︷ ︸
pairwise
cost

K(x , y)︸ ︷︷ ︸
assignment

kernel

dx dy s.t.
Πy Kt = Rt

Πx Kt = Dt︸ ︷︷ ︸
marginalization

Assignment is joint distribution
between resource and demand

Infinite-dimensional linear program

W2 = 2-Wasserstein distance x

y

K13

K24

q1 q2 q3 q4 q5

p1

p2

p3

D(y) =
PNd

i=1 di �(y � qi)

R(x) =

NrX

i=1

ri �(y � pi)

Discrete Assignment Kernel
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Dynamic Model

Want resources close to demand

Control = velocity field V

Dynamics given by transport equation:

∂tR(x , t) = −∇ ·
(
V (x , t) R(x , t)

)

Vt

Rt

Note: same location ⇒ same velocity

Motion cost =
∫
Ω ∥Vt(x)∥2Rt(x) dx (∼ “drag losses”)
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Optimal Control Problem

Total cost expressed by objective function:

J =

∫ T

0

(
W2

2

(
Rt, Dt

)
︸ ︷︷ ︸

assignment
cost

+ α

∫

Ω

‖Vt(x)‖2Rt(x) dx

︸ ︷︷ ︸
motion cost

)
dt

Competing

Problem: Find controller which minimizes J

Dt

Controller ∂tRt = −∇ ·
(
Vt Rt

)Vt Rt

Nonlinear infinite-dimensional optimal control problem in general

In 1D, can transform to infinite-dimensional LQ tracking problem
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Mathematical Background

Cumulative Distribution and Quantile Functions

Distribution µ(x)

CDF Fµ(x) :=
∫ x
−∞ µ(ξ) dξ

}
function inverses

Quantile Qµ(z) := inf{x : Fµ(x) ≥ z}

Wasserstein Distance in 1D (well-known result, e.g. [4])

W2
2(µ, ν) =

∫ 1

0
(Qν(z)− Qµ(z))

2 dz

Distributions with W2xy

xy isometric

Quantile functions with L2

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution
CDF

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

X

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

Distribution
Quantile

Max Emerick (UCSB) Optimal Combined Motion and Assignments NecSys22 8 / 20



Equivalent Problem

Original Problem

Objective:

J =

∫ T

0

(
W2

2

(
Rt ,Dt

)
+ α

∫

Ω
∥Vt(x)∥2Rt(x) dx

)
dt

Dynamics: ∂tRt(x) = −∇ ·
(
Vt(x) Rt(x)

)

Implicit constraint: same location ⇒ same velocity

Equivalent Problem

Objective:

J =

∫ T

0

∫ 1

0

((
QD(z , t)− QR(z , t)

)2
+ αU2(z , t)

)
dz dt

Dynamics: ∂tQR(z , t) = U(z , t)

Explicit constraint: ∂zQR(z , t) = 0 ⇒ ∂zU(z , t) = 0

Max Emerick (UCSB) Optimal Combined Motion and Assignments NecSys22 9 / 20



Equivalent Problem

Original Problem →
Dynamics

Equivalent Problem →
Dynamics
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1D Problem: Solution

Simplifying feature: dynamics and objective decoupled in space

J =

∫ 1

0

(∫ T

0

(
QD(z , t)− QR(z , t)

)2
+ αU2(z , t) dt

)
dz

s.t. ∂tQR(z , t) = U(z , t) (decoupled in z)

Solution at different z coupled only through input constraint

∂zQR(z , t) = 0 ⇒ ∂zU(z , t) = 0

Equivalent: solve a scalar LQ problem for each decoupled region
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The Scalar LQ Tracking Problem

Scalar Linear-Quadratic Tracking Problem

ū = argmin
u

∫ T

0

(
γ(t)− η(t)

)2
+ αu2(t) dt s.t. η̇ = u

η = transformed resource

u = control input

γ = transformed demand
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Solution to Scalar LQ Problem

Optimal solution has feedback and feedforward term:

+
−

γt
ġ = fg/α+ γ

gt
f/α

ut
η̇ = u

ηt

Controller

−1/f

Controller parameters:

ḟ (t) = f 2(t)/α− 1 f (T ) = 0

ġ(t) = f (t) g(t)/α + γ(t) g(T ) = 0

General solution exists

Two interesting cases: static and periodic
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Solution: Static Demand

Static demand ⇒ closed-form solution for trajectories:

η(t) = Φ(t) η0 + (1− Φ(t)) γ

Optimal trajectory is linear interpolation between initial state η0 and
transformed demand γ

Straight lines in L2 map to geodesics in Wasserstein space

L2
W2

Isometry
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Simulation Results: Static Demand

Discrete resource distribution, 10 identical agents

Continuous static demand distribution

Time horizon T = 10, weighting parameter α = 2

Approaches nearest reachable distribution
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Solution: Periodic Demand

Steady-state response as T → ∞:

+
−

γt 1
s−1/√α

gt 1√
α

ut
η̇ = u

ηt

Controller

−1√
α

Overall transfer function:

1/α
ω2+1/α

γt ηt

Second-order low-pass filter with fc = 1/
√
α

Transformed resource and demand perfectly in-phase

Max Emerick (UCSB) Optimal Combined Motion and Assignments NecSys22 16 / 20



Simulation Results: Periodic Demand

Discrete resource distribution, 10 identical agents

Continuous periodic demand distribution @ f = 1 hz

Simulated at three different values of α
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Conclusion

Summary:

Presented novel model for control of large swarms

Demonstrated reparameterization and analytic solution in 1D case

Shared simulation results for static and periodic cases

Future Work:

Investigate higher dimensions

Develop causal optimal controller

Apply towards distributed control methods
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Thanks

Thanks for Watching!

Questions?
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