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Control of Densities Arises in Many Contexts

@ Spatially distributed systems
@ Ensemble systems
@ Stochastic systems

o Generative artificial intelligence

Individual Evolution Equation

x = f(x,u)

T

Collective Evolution (Transport) Equation

OrP(x,t) ==V - (f(x, u) P(x, t))
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Spatially Distributed Systems

-

@ Physical “clouds” of particles/agents
approximated by density

@ Interactions — more complex dynamics

@ Inputs may be constrained

Velocity Control

X=a = Ot P(x,v,t) ==V - ([a(;(/,t)] Y(x, v, t))
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Ensemble Systems

@ Large population of subsystems
@ State distribution is statistical

o Different subsystems may or may
not have identical dynamics

Identical Dynamics

x = f(x,u) = e h(x, t) = =V - (f(x, u(t)) ¥(x, t))

Non-Identical Dynamics

x = fy(x, u) = o Y(x,a,t) = -V - (fa(x, u(t)) v(x, a, t))
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Stochastic Systems

@ Single system evolving stochastically
o State distribution is probabilistic

Ito SDE/Langevin Equation
x dt = f(x,u) dt + g(x) dW

(s

Fokker-Planck/Forward Kolmogorov Equation

Orp(x,t) = -V - (f(x, u) P(x, t)) + V- (D(x) Vi (x, t))
- V. < (Fx, u) — BLITED) u(x, t))

-~

density-dependent velocity
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Generative Artificial Intelligence

@ Generative models conceptualized as “sampling from distribution”
@ Aim to learn transformation b/w reference density po and target p;

e Modeling with transport/diffusion processes popular

@ Learning dynamics from data is related problem

o Key challenges on numerical/estimation/data-driven side
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Density Control Problems

@ Density control problems arise in many settings, rich class

@ Often interested in feedback control

Feedback Control Problem

Find K : (x,t,%,...) — u satisfying (additional constraints) such that

e v(x,t) = =V - (f(x, u) ¥(x, t))
u=K(x,t,,...)

has (desired properties)

@ Complicated velocity fields provide interesting challenges:

o Density-dependence (self-interaction, stochasticity)
o Constraints (underactuation, incompressibility, locality, etc.)

@ Numerical, estimation, data-driven challenges too
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Motivation:

Woasserstein Distance Lets Us Compare
Densities
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Preliminaries: Monge Problem

Monge Problem?

i?/,f/QHM(X)_XH;“(X) dx s.t. Myp =v

@ # denotes measure pushforward
o Densities y, ¥ must be normalized
@ Minimizer M,,_,, is optimal transport map

A AL

M(x) x

LGaspard Monge. “Mémoire sur la théorie des déblais et des remblais”. In: Mem. Math.
Phys. Acad. Royale Sci. (1781), pp. 666—704.
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Preliminaries: Kantorovich Problem

Kantorovich Problem?

JKCoy)dy = p
JK(x,)dx=v

_ H
@ Minimizer K is optimal transport plan ‘\

@ Minimum is squared 2-Wasserstein
distance W3(u, v)

@ Infinite-dimensional linear program, has K -
dual formulation

inf/ x — yl3 K(x,y) dx dy s.t.
K Jaxa

@ Works for discrete densities

2Leonid V Kantorovich. “On the translocation of masses”. In: Dokl. Akad. Nauk. USSR
(NS). vol. 37. 1942, pp. 199-201.
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Kantorovich Problem (Statistical Interpretation)

Kantorovich Problem (Statistical Interpretation)

iﬂf Ex [d*(X,Y)] s.t. Kx =, Ky =v

A
@ X ~ i, Y ~ v are random variables

@ K = Kx,y is joint distribution

e d? is squared Euclidean distance
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Wasserstein Distance as Extension of Ground Metric

@ Both densities Dirac masses:

Wh(6x,9y) = d(x,y) -

@ One density Dirac, one arbitrary:
Wi (0, v) = /By [d(x, )]

@ Both densities arbitrary — depends on assignment:
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Preliminaries: Dynamic Optimal Transport

Dynamic Optimal Transport?

Ot YP(x, t) V- (v(x, t)(x, )

inf J = /(/ Iv(x, )R o, t)dx)

( 0) = p(-), ¥(,1) =v()

@ Optimal state-transfer control problem
e Gives optimal path from p to v (not just assignment)

e i

3 Jean-David Benamou and Yann Brenier. “A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem”. In: Numerische Mathematik 84 {2000},
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Wasserstein Distance in Density Control

@ One of many ways to compare densities

Often natural (metric on ground space, mass preserved)
@ “Horizontal sense” as opposed to ‘“vertical sense”

@ Connections with optimal control, transport dynamics

Useful theoretical properties:

e Riemannian structure
o PDEs as gradient flows

W, L2, KL, TV
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Example: Tracking Control for Swarms

@ Problem: design controller so that swarm ) tracks reference p
o Want stability, asymptotic tracking of constant signals

Dynamics: Velocity Control
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Approach

@ Treat as regulation problem with changing setpoint p
o Consider constant-p case first

@ Optimal control-based design

Problem Statement

Oty = =V - (Vt T/Jt)

[e.9]

ot J= [ (When) + gy )
dJ:V 0 N——— \W_/

tracking error control effort

<Notation: Hth,_2 () —/ lv(x, t)||5 ¥(x, t) dx>
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Preview of Solution

Optimal Controller

@ Optimal transport map I\7l¢_>p gives particles “assignments”

o Particles move towards assigned particles at rate dist/+/«

¥ Constant p:

https://www.dropbox.com/scl/fo/
v605jg5nbdcprdfrxt4rh/h7d1=0&e=1&
preview=static.mp4&rlkey=
nj6zc9ssk38abc99javzvbOtr
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https://www.dropbox.com/scl/fo/v605jq5n5dcprdfrxt4rh/h?dl=0&e=1&preview=static.mp4&rlkey=nj6zc9ssk38abc99javzvb0tr
https://www.dropbox.com/scl/fo/v605jq5n5dcprdfrxt4rh/h?dl=0&e=1&preview=static.mp4&rlkey=nj6zc9ssk38abc99javzvb0tr
https://www.dropbox.com/scl/fo/v605jq5n5dcprdfrxt4rh/h?dl=0&e=1&preview=static.mp4&rlkey=nj6zc9ssk38abc99javzvb0tr
https://www.dropbox.com/scl/fo/v605jq5n5dcprdfrxt4rh/h?dl=0&e=1&preview=static.mp4&rlkey=nj6zc9ssk38abc99javzvb0tr

Approach

We solve this problem by leveraging two big results:
© The Eulerian-Lagrangian correspondence

@ The Riemannian structure of the Wasserstein space
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Main Difficulty

Problem

Oty = =V - (Vt ¢t)

. _ [T (2 2
inf J= [ (W) + vl o

Otthy = =V - (V/\t 7th)

—  Necessary Conditions )
ede = =3[V A? + 22,2 &pth (¥, p)

@ Nonlinear two-point boundary-value PDE

° W22 requires solving optimization problem
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Key ldea:

Problem is Simpler When Formulated
Differently
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Coordinate Change

@ Dynamics of particles much simpler than those of densities
@ Want to rewrite system in terms of particle dynamics
@ Encode positions of particles in map ¢

@ Reparameterize problem in terms of maps

Yo P,
/\ ¢t

| -

X0 @(XOI t)

Dynamics of ¢

x = v(x) — Or ®(x, t) = v(d(x, 1), t)
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Eulerian-Lagrangian Correspondence

Eulerian Representation
@ Evolve densities over fixed locations

e Dynamics given by transport equation: 0; ¢y = —V - (v+ ¢t)

Lagrangian Representation
@ Evolve locations of fixed particles

o Dynamics given by flow equation: 9, ®(x,t) = v(®(x, t), )

TN N O
Correspondence given by pushforward: A o
Ve N

t = |P;
ve=[odyvo ~ N
VAN
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Transformed Quantities

Orhe = =V - (vethr) — 0t = vi(Pt) =1 uy

Control Effort

HVt\|f2(¢t) — HUtH%?(%)

Tracking Error

W3 (4, p) — [ Mysp — I“iz(zpt) = ||Myosp — q’Hiz(wo)

e Can be formalized using the framework of Riemannian geometry*

4Felix Otto. “The geometry of dissipative evolution equations: the porous medium
equation”. In: (2001).
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Equivalent Problem

Original Problem

Otpe = =V - (Vf djt)
nf S = [ (Whn) + vl o

w7v

Equivalent Problem

O ®r = uy

. e 2
g}ﬂ J= 0 (HMwo—m - q’th(wO) +a ’|Ut||%2(¢o)> dt

Infinite-dimensional linear-quadratic problem!
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Solution to Equivalent Problem

Equivalent Problem

8t q>t = Ut

‘I'QE /= 0 <HM¢0—>P - ¢in2(¢o) + o ||ut||%2(¢0)> 2

0iby = — 1A
— Necessary Conditions et @ ‘
81_-/\1_- - M¢0_>p - ¢t
— (Details here®) —

ur = ﬁ(/\_ﬂwo—w — ) - Vi = ﬁ(/‘hwt—m -1)

5Max Emerick and Bassam Bamieh. “Continuum Swarm Tracking Control: A Geometric
Perspective in Wasserstein Space”. In: 2023 62nd |IEEE Conference on Decision and Control
(CDC). 2023, pp. 1367-1374.
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Properties of Controller

Optimal Controller

v

Optimal Trajectory

e = [(1 = o(t) T + a(t) Myg—sp] . Yo

@ Can show that v, follows geodesic from g to p

e Optimal control determines time schedule o(t)

Constant :

https://www.dropbox.com/scl/fo/v605jq5nbdcprdfrxt4rh/h7d1=0&e=1&
preview=static.mp4&rlkey=nj6zc9ssk38abc99javzvbOtr
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Time-Varying Case

@ Can apply same controller when p is changing

Vi = \/LE(M’%—)M _I)

e Can be interpreted as proportional controller on manifold®
@ Can be shown to be stable in W,-BIBO-sense

7
L

6Simone Fiori. “Extension of PID regulators to dynamical systems on smooth manifolds
(M-PID)". In: SIAM Journal on Control and Optimization 59.1. (2021} pp.- 78-102
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Simulations

Time-Varying p:

https://www.dropbox.com/scl/fo/v605jqbnbdcprdfrxt4rh/h7dl=
Oke=2&preview=constant_velocity.mp4&rlkey=
nj6zc9ssk38abc99javzvbOtr

https://www.dropbox.com/scl/fo/v605jqbnbdcprdfrxtd4rh/h7dl=
O&e=2&preview=fading.mp4&rlkey=nj6zc9ssk38abc99javzvbOtr
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@ Density control problems are a rich class of problems
@ Wasserstein distance is natural and useful in many instances

@ Eulerian-Lagrangian correspondence and Riemannian structure are key
tools for solving density control problems in Wasserstein space

Max Emerick Control of Densities MTNS 2024



Thanks to My Collaborators
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Thanks for Watching!

Questions?
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Appendix: Eulerian-Lagrangian Correspondence

@ Want to pose problem in terms of flow maps & € M
e Motivated by correspondence p; = [®¢]4 po, define

m:M-—-W
MP—)M#po

@ Equivalent dynamics — following diagram commutes:

at(p:vo@
Id L @t

I I

y

Po Pt

dp = —V-(vp)
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Appendix: Eulerian-Lagrangian Correspondence

@ Problem: [T is not invertible
e Solution: define MK using optimal transport map

nr.w-Mm
P Mpysp

Densities in W5 1-1 with OT maps in O C M:
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Appendix: Eulerian-Lagrangian Correspondence

o Key fact: I1: M — W, is a Riemannian submersion

o (M and W, are Riemannian manifolds, and DI is an
orthogonal projection onto each tangent space)

@ This allows us to make the following identifications:

@) W5
Points: M 0
Distance: IMpo—p = Zll 2 (p0) — Wa(p, po)
Dynamics: 0t =u Op = —V - (vp)
Speed: [ull 2 (p0) [vIl2(p)
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Appendix: Stability of Controller

e Type of stability — W,-BIBO:

Yo, Yr € Br(p) Vt = Ve € B(p) Vit

@ Proof by contradiction:
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