Control of Densities in Wasserstein Space

Max Emerick

University of California Santa Barbara

26th International Symposium on Mathematical Theory of Networks and Systems

Max Emerick

Control of Densities

Density Control Problems

2 Introduction to Optimal Transport

3 Example Problem Using Key Tools

Control of Densities Arises in Many Contexts

- Spatially distributed systems
- Ensemble systems
- Stochastic systems
- Generative artificial intelligence

Individual Evolution Equation

$$\dot{x} = f(x, u)$$

Collective Evolution (Transport) Equation $\partial_t \psi(x,t) = -\nabla \cdot (f(x,u) \psi(x,t))$ Max EmerickControl of DensitiesMTNS 20244/39

Spatially Distributed Systems

- Physical "clouds" of particles/agents approximated by density
- Interactions \rightarrow more complex dynamics
- Inputs may be constrained

Velocity Control

$$\dot{x} = v \qquad \Rightarrow \qquad \partial_t \psi(x,t) = -\nabla \cdot (v(x,t) \psi(x,t))$$

Acceleration Control

$$\ddot{\mathbf{x}} = \mathbf{a} \qquad \Rightarrow \qquad \partial_t \psi(\mathbf{x}, \mathbf{v}, t) = -\nabla \cdot \left(\begin{bmatrix} \mathbf{v} \\ \mathbf{a}(\mathbf{x}, t) \end{bmatrix} \psi(\mathbf{x}, \mathbf{v}, t) \right)$$

Ensemble Systems

- Large population of subsystems
- State distribution is statistical
- Different subsystems may or may not have identical dynamics

Identical Dynamics

$$\dot{x} = f(x, u) \qquad \Rightarrow \qquad \partial_t \psi(x, t) = -\nabla \cdot \left(f(x, u(t)) \psi(x, t) \right)$$

Non-Identical Dynamics

$$\dot{x} = f_{\alpha}(x, u) \qquad \Rightarrow \qquad \partial_t \psi(x, \alpha, t) = -\nabla \cdot \left(f_{\alpha}(x, u(t)) \psi(x, \alpha, t) \right)$$

Stochastic Systems

- Single system evolving stochastically
- State distribution is probabilistic

Ito SDE/Langevin Equation

$$x dt = f(x, u) dt + g(x) dW$$

\$

Fokker-Planck/Forward Kolmogorov Equation

$$\partial_t \psi(x,t) = -\nabla \cdot \left(f(x,u) \psi(x,t) \right) + \nabla \cdot \left(D(x) \nabla \psi(x,t) \right) \\ = -\nabla \cdot \left(\underbrace{\left(f(x,u) - \frac{D(x) \nabla \psi(x,t)}{\psi(x,t)} \right)}_{\psi(x,t)} \psi(x,t) \right)$$

density-dependent velocity

Max Emerick

MTNS 2024

< ∃⇒

Image: A math a math

Generative Artificial Intelligence

- Generative models conceptualized as "sampling from distribution"
- Aim to learn transformation b/w reference density ho_0 and target ho_1
- Modeling with transport/diffusion processes popular

- Learning dynamics from data is related problem
- Key challenges on numerical/estimation/data-driven side

Density Control Problems

- Density control problems arise in many settings, rich class
- Often interested in feedback control

Feedback Control Problem

Find $K: (x, t, \psi, ...) \mapsto u$ satisfying (additional constraints) such that

$$\begin{cases} \partial_t \psi(x,t) = -\nabla \cdot (f(x,u) \psi(x,t)) \\ u = \mathcal{K}(x,t,\psi,...) \end{cases}$$

has $\langle desired \ properties \rangle$

- Complicated velocity fields provide interesting challenges:
 - Density-dependence (self-interaction, stochasticity)
 - Constraints (underactuation, incompressibility, locality, etc.)
- Numerical, estimation, data-driven challenges too

Density Control Problems

2 Introduction to Optimal Transport

3 Example Problem Using Key Tools

10/39

- (日)

Motivation:

Wasserstein Distance Lets Us Compare Densities

Max Emerick

Control of Densities

MTNS 2024

Preliminaries: Monge Problem

Monge Problem¹

$$\inf_{M} \int_{\Omega} \left\| M(x) - x \right\|_{2}^{2} \mu(x) \, dx \qquad \text{s.t.} \qquad M_{\#} \mu = \nu$$

- # denotes measure pushforward
- Densities μ , ν must be normalized
- Minimizer $\bar{M}_{\mu \to \nu}$ is optimal transport map

Max Emerick

Control of Densities

Preliminaries: Kantorovich Problem

Kantorovich Problem²

$$\inf_{\mathcal{K}} \int_{\Omega \times \Omega} \|x - y\|_2^2 \, \mathcal{K}(x, y) \, dx \, dy \qquad \text{s.t.}$$

$$\int K(\cdot, y) \, dy = \mu$$
$$\int K(x, \cdot) \, dx = \nu$$

- Minimizer \bar{K} is optimal transport plan
- Minimum is squared 2-Wasserstein distance W²₂(μ, ν)
- Infinite-dimensional linear program, has dual formulation
- Works for discrete densities

 ²Leonid V Kantorovich. "On the translocation of masses". In: Dokl. Akad. Nauk. USSR (NS). vol. 37. 1942, pp. 199-201.

Kantorovich Problem (Statistical Interpretation)

Kantorovich Problem (Statistical Interpretation)

$$\inf_{\mathcal{K}} \mathbb{E}_{\mathcal{K}} \left[d^2(X, Y) \right] \qquad \text{s.t.} \qquad \mathcal{K}_X = \mu, \ \mathcal{K}_Y = \nu$$

- $X \sim \mu$, $Y \sim \nu$ are random variables
- $K = K_{X,Y}$ is joint distribution
- d^2 is squared Euclidean distance

Wasserstein Distance as Extension of Ground Metric

• Both densities Dirac masses:

$$\mathcal{W}_2(\delta_x,\delta_y)=d(x,y)$$

• One density Dirac, one arbitrary:

$$\mathcal{W}_2(\delta_x, \nu) = \sqrt{\mathbb{E}_{\nu}\left[d^2(x, y)\right]}$$

$$\mathcal{W}_2(\mu, \nu) = \inf_K \sqrt{\mathbb{E}_K \left[d^2(x, y) \right]}$$

.....

....

Preliminaries: Dynamic Optimal Transport

Dynamic Optimal Transport³

$$\partial_t \psi(x,t) = -\nabla \cdot \left(v(x,t) \psi(x,t) \right)$$

$$\inf_{\psi,v} J = \int_0^1 \left(\int_\Omega \|v(x,t)\|_2^2 \psi(x,t) \, dx \right) \, dt$$

$$\psi(\cdot,0) = \mu(\cdot), \quad \psi(\cdot,1) = \nu(\cdot)$$

- Optimal state-transfer control problem
- Gives optimal path from μ to ν (not just assignment)

³Jean-David Benamou and Yann Brenier. "A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem". In: *Numerische Mathematik*, 84 (2000), E So

Wasserstein Distance in Density Control

- One of many ways to compare densities
- Often natural (metric on ground space, mass preserved)
- "Horizontal sense" as opposed to "vertical sense"
- Connections with optimal control, transport dynamics
- Useful theoretical properties:
 - Riemannian structure
 - PDEs as gradient flows

Density Control Problems

2 Introduction to Optimal Transport

3 Example Problem Using Key Tools

Example: Tracking Control for Swarms

- Problem: design controller so that swarm ψ tracks reference ρ
- Want stability, asymptotic tracking of constant signals

Approach

- $\bullet\,$ Treat as regulation problem with changing setpoint ρ
- Consider constant- ρ case first
- Optimal control-based design

Problem Statement

$$\partial_t \psi_t = -\nabla \cdot \left(v_t \psi_t \right)$$

$$\inf_{\psi, v} J = \int_0^\infty \left(\underbrace{\mathcal{W}_2^2(\psi_t, \rho)}_{\text{tracking error}} + \underbrace{\alpha \|v_t\|_{L^2(\psi_t)}^2}_{\text{control effort}} \right) dt$$

$$\left(\text{Notation:} \quad \|v_t\|_{L^2(\psi_t)}^2 := \int_{\Omega} \|v(x,t)\|_2^2 \psi(x,t) \, dx \right)$$

Preview of Solution

Optimal Controller

$$m{v}_t = rac{1}{\sqrt{lpha}} (ar{M}_{\psi o
ho} - \mathcal{I})$$

- Optimal transport map $ar{M}_{\psi
 ightarrow
 ho}$ gives particles "assignments"
- Particles move towards assigned particles at rate $dist/\sqrt{lpha}$

Constant ρ :

https://www.dropbox.com/scl/fo/ v605jq5n5dcprdfrxt4rh/h?dl=0&e=1& preview=static.mp4&rlkey= nj6zc9ssk38abc99javzvb0tr We solve this problem by leveraging two big results:

- The Eulerian-Lagrangian correspondence
- ② The Riemannian structure of the Wasserstein space

Main Difficulty

Problem

$$\partial_t \psi_t = -\nabla \cdot \left(\mathbf{v}_t \psi_t \right)$$

$$\inf_{\psi, \mathbf{v}} J = \int_0^\infty \left(\mathcal{W}_2^2(\psi_t, \rho) + \alpha \, \|\mathbf{v}_t\|_{L^2(\psi_t)}^2 \right) dt$$

$$\rightarrow$$
 Necessary Conditions

$$\begin{cases} \partial_t \psi_t = -\nabla \cdot \left(\nabla \lambda_t \psi_t \right) \\ \partial_t \lambda_t = -\frac{1}{2} \| \nabla \lambda_t \|^2 + \frac{1}{2\alpha^2} \frac{\delta}{\delta \psi_t} \mathcal{W}_2^2(\psi_t, \rho) \end{cases}$$

- Nonlinear two-point boundary-value PDE
- \mathcal{W}_2^2 requires solving optimization problem

	_	
N/1-23/	E moot	
IVIAX	Liller	11. N

Key Idea:

Problem is Simpler When Formulated Differently

Max Emerick

Control of Densities

MTNS 2024

Coordinate Change

- Dynamics of particles much simpler than those of densities
- Want to rewrite system in terms of particle dynamics
- Encode positions of particles in map Φ
- Reparameterize problem in terms of maps

Eulerian-Lagrangian Correspondence

Eulerian Representation

- Evolve densities over fixed locations
- Dynamics given by transport equation: $\partial_t \psi_t = -\nabla \cdot$

$$\partial_t \psi_t = -\nabla \cdot (\mathbf{v}_t \psi_t)$$

Lagrangian Representation

• Evolve locations of fixed particles

• Dynamics given by flow equation:

$$: \quad \partial_t \Phi(x,t) = v(\Phi(x,t),t)$$

Correspondence given by pushforward:

$$\psi_t = \left[\Phi_t\right]_{\#} \psi_0$$

Control of Densities

Dynamics

$$\partial_t \psi_t = -\nabla \cdot (\mathbf{v}_t \psi_t) \qquad \rightarrow \qquad \partial_t \Phi_t = \mathbf{v}_t(\Phi_t) =: u_t$$

Control Effort

$$\|v_t\|_{L^2(\psi_t)}^2 \to \|u_t\|_{L^2(\psi_0)}^2$$

Tracking Error

$$\mathcal{W}_2^2(\psi_t, \rho) \longrightarrow \|\bar{M}_{\psi_t \to \rho} - \mathcal{I}\|_{L^2(\psi_t)}^2 = \|\bar{M}_{\psi_0 \to \rho} - \Phi\|_{L^2(\psi_0)}^2$$

• Can be formalized using the framework of Riemannian geometry⁴

3

⁴Felix Otto. "The geometry of dissipative evolution equations: the porous medium equation". In: (2001). $(\Box \rightarrow \langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land$

Equivalent Problem

Original Problem

$$\partial_t \psi_t = -\nabla \cdot (\mathbf{v}_t \psi_t)$$

$$\inf_{\psi, \mathbf{v}} J = \int_0^\infty \left(\mathcal{W}_2^2(\psi_t, \rho) + \alpha \|\mathbf{v}_t\|_{L^2(\psi_t)}^2 \right) dt$$

Equivalent Problem

$$\partial_t \Phi_t = u_t$$

$$\inf_{\Phi, u} J = \int_0^\infty \left(\left\| \bar{M}_{\psi_0 \to \rho} - \Phi_t \right\|_{L^2(\psi_0)}^2 + \alpha \left\| u_t \right\|_{L^2(\psi_0)}^2 \right) dt$$

Infinite-dimensional linear-quadratic problem!

Max Emerick

Control of Densities

Solution to Equivalent Problem

Equivalent Problem

$$\partial_t \Phi_t = u_t$$

$$\inf_{\Phi, u} J = \int_0^\infty \left(\left\| \bar{M}_{\psi_0 \to \rho} - \Phi_t \right\|_{L^2(\psi_0)}^2 + \alpha \left\| u_t \right\|_{L^2(\psi_0)}^2 \right) dt$$

$$\rightarrow \qquad \text{Necessary Conditions} \qquad \begin{cases} \partial_t \Phi_t = -\frac{1}{\alpha} \Lambda_t \\ \partial_t \Lambda_t = \bar{M}_{\psi_0 \rightarrow \rho} - \Phi_t \end{cases}$$

 \rightarrow (Details here⁵) -

$$u_t = rac{1}{\sqrt{lpha}} (ar{M}_{\psi_0 o
ho} - \Phi_t) \qquad o \qquad v_t = rac{1}{\sqrt{lpha}} (ar{M}_{\psi_t o
ho} - \mathcal{I})$$

⁵Max Emerick and Bassam Bamieh. "Continuum Swarm Tracking Control: A Geometric Perspective in Wasserstein Space". In: 2023 62nd IEEE Conference on Decision and Control (CDC). 2023, pp. 1367–1374.

Max Emerick

Control of Densities

Properties of Controller

Optimal Controller

$$v_t = rac{1}{\sqrt{lpha}} (ar{M}_{\psi_t o
ho} - \mathcal{I})$$

Optimal Trajectory

$$\psi_{t} = \left[\left(1 - \sigma(t) \right) \mathcal{I} + \sigma(t) \, \bar{M}_{\psi_{0} \to \rho} \right]_{\#} \psi_{0}$$

- Can show that ψ_t follows **geodesic** from ψ_0 to ρ
- Optimal control determines time schedule $\sigma(t)$

Constant ψ :

https://www.dropbox.com/scl/fo/v605jq5n5dcprdfrxt4rh/h?dl=0&e=1& preview=static.mp4&rlkey=nj6zc9ssk38abc99javzvb0tr

< 日 > < 同 > < 回 > < 回 > .

Time-Varying Case

• Can apply same controller when ρ is changing

Controller

$$v_t = rac{1}{\sqrt{lpha}} (ar{M}_{\psi_t o
ho_t} - \mathcal{I})$$

- Can be interpreted as proportional controller on manifold⁶
- Can be shown to be stable in \mathcal{W}_2 -BIBO-sense

⁶Simone Fiori. "Extension of PID regulators to dynamical systems on smooth manifolds (M-PID)". In: *SIAM Journal on Control and Optimization* 59.1 (2021) pp. 78+102 = 4

Max Emerick

Control of Densities

MTNS 2024

Time-Varying ρ :

https://www.dropbox.com/scl/fo/v605jq5n5dcprdfrxt4rh/h?dl= 0&e=2&preview=constant_velocity.mp4&rlkey= nj6zc9ssk38abc99javzvb0tr

https://www.dropbox.com/scl/fo/v605jq5n5dcprdfrxt4rh/h?dl= 0&e=2&preview=fading.mp4&rlkey=nj6zc9ssk38abc99javzvb0tr

< □ > < □ > < □ > < □ >

- Density control problems are a rich class of problems
- Wasserstein distance is natural and useful in many instances
- Eulerian-Lagrangian correspondence and Riemannian structure are key tools for solving density control problems in Wasserstein space

Thanks to My Collaborators

Bassam Bamieh

Jared Jonas

- (日)

Thanks for Watching!

Questions?

Max Emerick

Control of Densities

MTNS 2024

35 / 39

æ

Appendix: Eulerian-Lagrangian Correspondence

- \bullet Want to pose problem in terms of flow maps $\Phi\in\mathbb{M}$
- Motivated by correspondence $\rho_t = [\Phi_t]_{\#} \rho_0$, define

$$\Pi:\mathbb{M}\to\mathbb{W}$$
$$M\mapsto M_{\#}\rho_0$$

• Equivalent dynamics \rightarrow following diagram commutes:

Appendix: Eulerian-Lagrangian Correspondence

- Problem: Π is not invertible
- Solution: define Π^{-R} using optimal transport map

$$\Pi^{-R}: \mathbb{W} \to \mathbb{M}$$
$$\rho \mapsto \bar{M}_{\rho_0 \to \rho}$$

Densities in \mathbb{W}_2 1-1 with OT maps in $\mathbb{O} \subset \mathbb{M}$:

Appendix: Eulerian-Lagrangian Correspondence

- Key fact: $\Pi:\mathbb{M}\to\mathbb{W}_2$ is a Riemannian submersion
- (M and W₂ are Riemannian manifolds, and D∏ is an orthogonal projection onto each tangent space)
- This allows us to make the following identifications:

$$\begin{array}{cccc} \mathbb{O} & & \mathbb{W}_2 \\ \text{Points:} & M & \rho \\ \text{Distance:} & \|M_{\rho_0 \to \rho} - \mathcal{I}\|_{L^2(\rho_0)} & \longleftrightarrow & \mathcal{W}_2(\rho, \rho_0) \\ \text{Dynamics:} & \partial_t \Phi = u & \partial_t \rho = -\nabla \cdot (v\rho) \\ \text{Speed:} & \|u\|_{L^2(\rho_0)} & & \|v\|_{L^2(\rho)} \end{array}$$

Appendix: Stability of Controller

• Type of stability $\rightarrow \mathcal{W}_2\text{-BIBO}$:

$$\psi_0, \psi_t \in B_r(\mu) \quad \forall t \qquad \Rightarrow \qquad \psi_t \in B_r(\mu) \quad \forall t$$

• Proof by contradiction:

