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Fluid Mixing is All Around Us
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Chemical ProcessesMilk and Coffee Biological Systems

Microfluidic DevicesCombustion EnginesFood Processing



History of Fluid Mixing Problem

• 1870s-1940’s: turbulence (Boussinesq, Reynolds, Taylor, Kolmogorov, …)

• 1960s-1990s: chaos (Arnold, Aref, Ottino, …)

• 2000s - Present: optimal mixing 
• Mixing rates (Constantin, Thiffeault, Doering, Bressan, Kiselev, Seis, …)

• Control for mixing (Mezic, Aamo, Krstic, Cortelezzi, Hu, Schmid, …)
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Open question: precise characterization of optimal mixing fields



Problem Formulation
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Problem Formulation

• Transport of passive densities , ρ μ
• Advective regime  → ∂tρ = − ∇ ⋅ (ρv)
• Incompressible  → ∇ ⋅ v = 0
• Assume   focus on controlling one densityμ = F(ρ) →
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Problem Statement
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min
ρ,v ∫

T

0
∥vt∥2

⏟
effort

dt + α d2(ρT, ρ*)

mixedness

s.t. { ∂tρ = − ∇ ⋅ (ρv)
∇ ⋅ v = 0
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Problem Statement

• …∥v∥ = kinetic energy ∥v∥Lp, enstrophy ∥∇v∥Lp, palenstrophy ∥Δv∥Lp,

• …d = Wasserstein, negative-order sobolev W−k,p, "mix norm",

•  uniform  classical mixingρ* →
• Dynamic OT + incompressibility + final state penalty
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⏟
effort
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Problem Decomposition (Thm 15)
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min
ρ,v ∫

T

0
∥vt∥2 dt + α d2(ρT, ρ*) s.t.

∂tρ = − ∇ ⋅ (ρv)
∇ ⋅ v = 0

ρ0 fixed

min
ρT

min
ρ,v ∫

T

0
∥vt∥2 dt s.t.

∂tρ = − ∇ ⋅ (ρv)
∇ ⋅ v = 0
ρ0, ρT fixed

forms metric on reachable set

+ α d2(ρT, ρ*) s.t. ρT ∈ R

reachable
set

⇕



(Geo)metric Structure
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m2(ρ0, ρT) := min
ρ,v ∫
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∥vt∥2 dt s.t.
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(Geo)metric Structure

• Endows reachable set  with metric structureR
• Riemannian structure if ∥v∥2 = ⟨v, v⟩
• Induced by Riemannian submersion on Sdiff = {volume-preserving diffeo’s} 

(analogous result to Otto [1])
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[1] F. Otto, "The geometry of dissipative evolution equations: the porous medium equation,”

Comm. Partial Differential Equations, vol. 26, no. 1-2, pp. 101-174, 2001.
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(Geo)metric Structure

• Endows reachable set  with metric structureR
• Riemannian structure if ∥v∥2 = ⟨v, v⟩
• Induced by Riemannian submersion on Sdiff = {volume-preserving diffeo’s} 

(analogous result to Otto [1])

• Can define gradient flows on R
• Optimal mixing flows = geodesics
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Geodesic Equations (Thm 20)

Supposing that  ,∥v∥ = ∥Kv∥L2
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geodesic
equations

∂tρ = − ∇ ⋅ (ρv)
∇ ⋅ v = 0

∂tλ = − ∇λ ⋅ v
K*Kv = ρ∇λ + ∇γ

⇒
∂tρ = − ∇ρ ⋅ v
∂tλ = − ∇λ ⋅ v

v = Π[(K*K)−1(ρ∇λ)]
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geodesic
equations

∂tρ = − ∇ ⋅ (ρv)
∇ ⋅ v = 0

∂tλ = − ∇λ ⋅ v
K*Kv = ρ∇λ + ∇γ

⇒
∂tρ = − ∇ρ ⋅ v
∂tλ = − ∇λ ⋅ v

v = Π[(K*K)−1(ρ∇λ)]

• Simultaneous transport by v
• Expect PDE for evolution of v



Geodesics in L2
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Kinetic energy penalty:  , ∥v∥ = ∥v∥L2 K = I
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Geodesics in L2

• Analogous result to Arnold [2]

• Kinetic energy is unnatural choice for mixing effort [3]

• Enstrophy norm  likely better behaved∥∇v∥L2
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Conclusion

Takeaways:
• Fluid mixing is an optimal transport problem (across scales, not space)
• Constrained optimal transport problems may retain Riemannian structure

Future Work:

• Characterizing reachable set R
• Final state selection problem for ρT

• Geodesics for enstrophy norm ∥∇v∥L2

• Mixing with gradient flows
• Numerical simulations
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Thanks for watching! Questions?
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Link to Paper


