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Fluid Mixing is All Around Us

Milk and Coffee

Food Processing

Chemical Processes

Turbofan Engine

Compressor Turbine

Duct Fan

Exhaust

Combustion
Nozzle

Air Intake i
Bypass Air  chamber

boldmethod )

Combustion Engines

LTI

5ol d

2/
74

\

Al - ADN

111
X I
fesvadens
a2 IR N T]

e edodandgen
= 20

Microfluidic Devices



History of Fluid Mixing Problem

 1870s-1940’s: turbulence (Boussinesqg, Reynolds, Taylor, Kolmogorov, ...)
 1960s-1990s: chaos (Arnold, Aref, Ottino, ...)
e 2000s - Present: optimal mixing
* Mixing rates (Constantin, Thiffeault, Doering, Bressan, Kiselev, Seis, ...)
 Control for mixing (Mezic, Aamo, Krstic, Cortelezzi, Hu, Schmid, ...)

| .8|L;, 'L




History of Fluid Mixing Problem

 1870s-1940’s: turbulence (Boussinesqg, Reynolds, Taylor, Kolmogorov, ...)
 1960s-1990s: chaos (Arnold, Aref, Ottino, ...)
e 2000s - Present: optimal mixing
* Mixing rates (Constantin, Thiffeault, Doering, Bressan, Kiselev, Seis, ...)
 Control for mixing (Mezic, Aamo, Krstic, Cortelezzi, Hu, Schmid, ...)

Open question: precise characterization of optimal mixing fields



Problem Formulation




Problem Formulation

» Transport of passive densities p, u




Problem Formulation

» Transport of passive densities p, u
» Advective regime — d,p = — V - (pv)




Problem Formulation

» Transport of passive densities p, u
» Advective regime — d,p = — V - (pv)

» Incompressible - V - v = ()




Problem Formulation

» Transport of passive densities p, u

» Advective regime — d,p = — V - (pv)

» Incompressible - V - v = ()

» Assume u = F(p) — focus on controlling one density
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T
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min [ Hthz dt + adz(pT,p*) S.1. { P (pv)
P>V o V-v=0
effort mixedness
e ||v]l = kinetic energy ||v||;,, enstrophy ||V V||;,, palenstrophy [|Av]|;,, ...
« d = Wasserstein, negative-order sobolev W_k’p, "miXx norm’, ...

* P, uniform — classical mixing

 Dynamic OT + incompressibility + final state penalty



Problem Decomposition (Thm 15)

T d,p=—V-(pv)
min [ Hthzdt + adz(pT,p*) S.t. V-v=0
S po fixed
T atp =—V- (pv)
min | min J v, ||°dt s.t. V-v=20 + ad*(py,ps) S.t. pr € R
PT P>V 0 ' - ~ -
Po Pr TIX€O reachable
set

forms metric on reachable set
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(Geo)metric Structure

T o,p=—V-(pv)
mz(p()a pT) = min J HVt”zdt S.1. V-v=0
- 0 Pos Pr f|Xed

e Endows reachable set R with metric structure

e Riemannian structure Iif HVH2 = (V, V)

* |Induced by Riemannian submersion on Sdiff = {volume-preserving diffeo’s}
(analogous result to Otto [1])

« Can define gradient flows on R
* Optimal mixing flows = geodesics

[1] F. Otto, "The geometry of dissipative evolution equations: the porous medium equation,”

! Comm. Partial Differential Equations, vol. 26, no. 1-2, pp. 101-174, 2001.
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Supposing that ||v|| = [|KV||;-,

atpz_v(pv) atp:—va

equations 0A=—VAi-v t
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Leray Projector
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Lagrange Multiplier
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Supposing that ||v|| = [|KV||;-,
atpz_v(pv) atp:—va
geodesic V.v=0 N 04 =—Va-v
equations dA=—VA-v

_ % =1
K*Kv = pVi + Vy v =T[(K*K) Y (p V2)|

o Simultaneous transport by v

o Expect PDE for evolution of v
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Geodesics in L?

Kinetic energy penalty: ||v|| = |[v||;., K =1

op=—Vp-v

geodesic 04 =—Vi-v N oy = —TI|(v- V)v]
equations

v=T|pVi]

Incompressible Euler

* Analogous result to Arnold [2]

» Kinetic energy is unnatural choice for mixing effort [3]

» Enstrophy norm ||V v||;- likely better behaved

[2] V. Arnold, "Sur la géomeétrie différentielle des groupes de Lie de dimension infinie et ses applications [3] Y. Brenier, “The least action principle and the related concept of generalized flows for incompressible
a I'nydrodynamique des fluides parfaits," Ann. Inst. Fourier, vol. 16, no. 1, pp. 319-361, 1966. perfect fluids,” Journal of the American Mathematical Society, vol. 2, no. 2, pp. 225-255, 1989.
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Conclusion

Takeaways:

* Fluid mixing is an optimal transport problem (across scales, not space)
* Constrained optimal transport problems may retain Riemannian structure

Future Work:
e Characterizing reachable set R

 Final state selection problem for p;

« Geodesics for enstrophy norm ||V v||;-

* Mixing with gradient flows
e Numerical simulations
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