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Many Applications for Autonomous Swarms

Logistics Entertainment

Transportation Defense Data Collection



Motivation

The Problem in Focus:
* Large swarms robust/efficient, but hard to model/control

 Want to develop theoretical foundations for design heuristics

Aim to Answer Questions:
 How should large swarms move and communicate?
e \Which control architectures can achieve which behaviors?

 What are the attainable performance limits of these architectures?



Approach

* This work: what sorts of motion patterns are optimal?
* Looking at motion planning and control for tracking
* Using continuum models, optimal transport, optimal control

Objective
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Problem Formulation: Demand/Resource Distributions

« Demand = known entity (requires services)
* Resource = controlled mobile agents (provides services)




Problem Formulation: Assignment

Monge Problem (Optimal Transport): inf J | M(x) — xH%Rt(x) dx S.1. MyR, = D,
Q2

* # denotes measure pushforward
» Minimizer Mg _, , is optimal assignment map

»  Minimum WZZ(RI, D)) is Wasserstein distance




Problem Formulation: Dynamic Model

* Tracking — want resources close to demand
« Control resource through velocity field V

Dynamics (Continuity Equation): J,R(x) = —V- (Rt(x) Vt(x))

Motion Cost: ”VtH%Z(Rt) ‘= JQ ”Vt(X)H%R;(X) dx



Formal Problem Statement

Given an initial resource distribution Ry and demand trajectory D over 10, 7], solve

T
infj WAR.D) + a [Vl dt st OR=-V-(RV)

RV Jo = )

Assignment Cost Motion Cost Dynamic Constraint

 [ntuitively, “R should track D efficiently”
* Trade-off parameter a controls relative importance of costs

Minimize cost over (R, V)

_________________________________________________________________




Structural Features of Solution

Necessary Conditions for Optimality:

ath —_ V . (RIVAI) RO — RO

1 1 o
oA, = —5\\VAt\|§+Zé—&W§(Rt,Dt) Ar=0



Structural Features of Solution

Necessary Conditions for Optimality: | S |
Optimal velocity field is irrotational!

OR, =—-V-R[VA) R, = R,

1 1 o
oA, = —3\\VAt\|§+Zé—&W§(Rt,Dt) Ar=0



Structural Features of Solution

Necessary Conditions for Optimality:

oR,
0\

— V(R VA)

1 2
— VA3 +
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2a OR,

boundary value PDE

Ry =R, Nonlinear two-point
Wi(R,D,) |A;=0



Structural Features of Solution

Necessary Conditions for Optimality:

oR,
0\

~ V.- (RtVAt) R, = R,

1
_EHVAtH% 20{ SR, Wz(Rt’ Dt) AT =0

Demand trajectory enters through forcing term
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Structural Features of Solution

Necessary Conditions for Optimality:

ath —_ V . (RIVAI) RO — RO

1 1] o
oA, = —5\\VAt\|§+2M—&W§(Rt,Dt) Ar=0

Requires solving an optimization problem

« Optimal solutions are noncausal: need to know D ahead of time
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Structural Features of Solution

Necessary Conditions for Optimality:

ath —_ V . (RIVAt) RO — RO

1 1 o
oA, = —EHVAA|%+Z(S—&W22(Rt,Dt) Ar=0

« Optimal solutions are noncausal: need to know D ahead of time
 Computational nightmare

« How to approach this?



Simple Case: Regulation Problem

» Consider same problem with D constant in time

 (In this case, know future trajectory of D!)




Fact: Wasserstein Space = Riemannian Manifold

* | everage geometric structure to solve problem

« Can show that R moves along Wasserstein geodesic towards D:

R, = |(1=0(®) 1 + o) MRWD]#RO
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Fact: Wasserstein Space = Riemannian Manifold

* | everage geometric structure to solve problem

« Can show that R moves along Wasserstein geodesic towards D:

K,

(I=0o) I + o(t) Mg _p R

Interpolation between identity and assignment map
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Fact: Wasserstein Space = Riemannian Manifold

* | everage geometric structure to solve problem

« Can show that R moves along Wasserstein geodesic towards D:

(1 — 6|1 + [o)|My_p], R,

Time schedule 6 comes from OC problem

K,

11



Fact: Wasserstein Space = Riemannian Manifold

* | everage geometric structure to solve problem

« Can show that R moves along Wasserstein geodesic towards D:

R, = |(1=0(®) 1 + o) MRWD]#RO
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11



Fact: Wasserstein Space = Riemannian Manifold

* | everage geometric structure to solve problem

« Can show that R moves along Wasserstein geodesic towards D:
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Fact: Wasserstein Space = Riemannian Manifold

* | everage geometric structure to solve problem

« Can show that R moves along Wasserstein geodesic towards D:

R, = |(1=0(®) 1 + o) MRWD]#RO

e Can show assignments conserved — particle trajectories independent!

* Gives form of optimal controller:

v, = o (1

Error vector
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Fact: Wasserstein Space = Riemannian Manifold

* | everage geometric structure to solve problem

« Can show that R moves along Wasserstein geodesic towards D:

R, = |(1=0(®) 1 + o) MRWD]#RO

e Can show assignments conserved — particle trajectories independent!

* Gives form of optimal controller:

V. = (MRﬁD ~ 1)

Rate of traversal
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Regulation Problem: Simulation

t=0.000
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Regulation Problem: Simulation

t=0.000
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Back to Tracking Problem



Back to Tracking Problem

 Problem #1: Need to address noncausality
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Back to Tracking Problem

 Problem #1: Need to address noncausality

* ldea #1: use model to forecast demand trajectory, use forecasted trajectory In
necessary conditions in receding horizon scheme

causal controller

predictive D > noncausal | Vi |
model —>{ controller :

>l  plant >

— — — — — m— m— m— m— m— e e e e e e e e e e e e e e S e e e e e e e e e e ]
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Back to Tracking Problem

 Problem #1: Need to address noncausality

* ldea #1: use model to forecast demand trajectory, use forecasted trajectory In
necessary conditions in receding horizon scheme

* Problem #2: Don’t have model for demand

* |ldea #2: Use static forecasting model:

0D, =0

* (Also solves Problem #3: computational cost)
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MPC Algorithm for Time-Varying Demands

e Forecast that future demand = current demand

» Compute optimal control, apply for A, seconds
 Update demand and repeat

14



MPC Algorithm for Time-Varying Demands

e Forecast that future demand = current demand

» Compute optimal control, apply for A, seconds
 Update demand and repeat

* Resulting controller has form:

V. = 6(t) (MRWDZ — 1)

14



MPC Algorithm for Time-Varying Demands

e Forecast that future demand = current demand

» Compute optimal control, apply for A, seconds
 Update demand and repeat

* Resulting controller has form:

V. = 6(t) (MRWDZ — 1)

* Heuristic, not optimal in general

14



MPC Algorithm for Time-Varying Demands

e Forecast that future demand = current demand

» Compute optimal control, apply for A, seconds
 Update demand and repeat

* Resulting controller has form:

V. = 6(t) (MRWDZ — 1)

* Heuristic, not optimal in general
e But, can be applied in real-time
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MPC Algorithm: Simulations

t=0.000




MPC Algorithm: Simulations

t=0.000




Conclusion

Takeaways:
o Simplified models can provide insight and design heuristics

* | everaging geometric structure can be powerful

Future Work:
* Solving necessary conditions
 More sophisticated demand models

* |nvestigating resulting controllers
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Thanks to My Collaborators

Bassam Bamieh Jared Jonas

17



Thanks for watching!

Questions?



