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Many Applications for Autonomous Swarms

Emergency Response Logistics Entertainment

Transportation Defense Data Collection
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The Problem in Focus:
@ Large swarms robust and efficient, but hard to model/control

@ Want to develop theoretical foundations for design heuristics

Aim to Answer Questions:
@ How should large swarms ideally move and communicate?

@ Which control architectures can achieve which behavior?

@ What are the attainable performance limits of these architectures?
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Approach

@ This work: what sorts of motions patterns are optimal?
@ Simplest problem first: motion planning/control for tracking

@ Based on continuum models, optimal transport, optimal control

Objective

Resource

Assignment
—

Demand

Motion
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Problem Formulation: Demand/Resource Distributions

e Demand = known entity (requiring services)
@ Resource = controlled mobile agents (providing services)

@ In this work, we focus on continuous distributions
(~ continuum models for large-scale swarms)
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Problem Formulation: Assignment

Monge Problem (Optimal Transport)

imf/ IM(x) — x]?Re(x)dx  st.  MyR, = D,
Q

@ # is the measure pushforward
@ Minimizer Mg,_,p, is optimal transport map
e Minimum is Wasserstein distance W3(R;, D;)
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Problem Formulation: Dynamic Model

@ Tracking — want resource close to demand
@ Control resource with velocity field V
@ Dynamics given by transport equation:

OtR(x,t) = — V- (V(x,t)R(x,1))

e Motion cost : ||VtH%2(Rt) = [|Ve(x)]?Re(x) dx  (~ “energy cost”)
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Formal Problem Statement

Proposed Problem
Given initial resource distribution Ry, demand trajectory D, solve

T
. 2

,l?n\f//o Wi(R,D) + a|V[pg dt st 9:R=-V-(VR).
Assignment Cost Motion Cost Dynamic Constraint

@ Intuitively, “R should track D as efficiently as possible”
@ Trade-off parameter o controls relative importance of two costs

Minimize cost over (R, V)
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Main Result

Ry continuous + D static

Optimal Trajectory

=

(1~ 0(t) T + o(t) Mr,p] , Ro

e Optimal transport tells us R; is geodesic from Ry to D

@ Optimal control determines time schedule o(t)
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Practical Implications

MPC Algorithm for Time-Varying References
© Suppose current demand distribution is static
@ Compute optimal controller, apply for 7 seconds

© Update demand and repeat
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Theoretical Implications

Surprising that problem is tractable
Why does it turn out to be “nice”?

What can we learn from this?
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Big Idea 1:

Problem is Simpler When Formulated
Differently
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Quantile Functions (1D)

Cumulative Distribution and Quantile Functions

Distribution p(x)
CDF Fo(x) = [7, p(€) d¢

function inverses
Quantile Qp(z) :=inf{x: Fy(x) > z}

Wasserstein Distance in 1D (well-known result)

1
Wa(p, 1) = /0 (Q)(2) — Qu(2))? dz

:
. . . . ——CDF
Distributions with W, o :

isometric s

Quantile functions with L2 = :

o .
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x

z

M. Emerick and B. Bamieh Continuum Swarm Tracking CDC 2023 13 /25



Equivalent Problem (1D)

Original Problem

-
inf/ WE(R,D) + af|V|[%gdt st @R = —V-(VR)
0

R,V

Equivalent Problem: LQ Tracking

T r1
inf / / (Qr— Qp)* + al?dzdt st LQgr(z,t) = U(z,t)
o Jo ~- :

QR7U

quadratic cost function linear dynamics
(decoupled)

@ Equivalent problem has straightforward analytic solution
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Equivalent Problem

Original Problem — osf ——in
Dynamics

0 0.5 1 15 2 25 3

Equivalent Problem —  1sf — Q]
Dynamics
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Natural Question:

Can quantile functions be extended
to higher dimensions?
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“Quantile Functions” in Higher Dimensions

Key Property: p = [Qul#lpy

Central Idea:
@ Pick reference density p
@ Represent density p with map M s.t. p= Myp

o Lift problem into space of maps M

M. Emerick and B. Bamieh Continuum Swarm Tracking CDC 2023



“Quantile Functions” in Higher Dimensions

@ Problem: M s.t. p = Mypu is not unique
@ Solution: use optimal transport map I\_ﬂ#_,p

@ OT maps have other advantages too

Densities in W, 1-1 with OT maps in O C M:
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Big Idea 2:

We can understand the geometry of W,
through the geometry of M and O
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Equivalent Geometry

o Key fact: 1 : M — W, is a Riemannian submersion

e (M and W, are Riemannian manifolds, and DI is an
orthogonal projection onto each tangent space)

@ This allows us to make the following identifications:

O Wo
Points: M p
Distance: M = Z|| 2 — Wa(p, 1)
Dynamics: oM =U Otp=—V-(Vp)
Speed: Ul 2 IV 12(0)
(Recall Ul == [1UG) dz)
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Equivalent Problem

@ What should we choose as reference density 17?
o At least when D is static, take p = D

Original Problem

R st %R = —V-(WR)

I

mf/ W2(R,D) + a|V|>

Equivalent Problem: LQ Tracking

-
inf /O M=) + aUlBapy de st §M(z 1) = UGz 1)

quadratic cost function linear dynamics
(decoupled)

————=——=— = ~
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Solution: Static Case

@ Decoupling means we can solve, for each point d € supp(D),

Scalar Linear-Quadratic Tracking Problem

-
inf/ (r—d)? + au? s.t. r= u,
0

r,u

and reconstruct solution to overall problem.

Controller: u= —f(t)(r—d)/a
Trajectory: r=o(t)n+(1—o(t))d

Cost: J = (n—d \/_tanh(T/\/_)

@ Linear interpolation between initial state and transformed demand
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Solution: Static Case

Pulling this back to our original problem...

Controller: Vi = —f(t) (T — Mg,~p)/a
Trajectory: Re = [(1—0(t))T + o(t) I\7IR0_>D]# Ro
Cost: J = W3(Ro, D) a tanh (T//a) /2

e R, moves along geodesic from Ry to D
@ Time schedule o(t) controlled by o, T
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When demand is static:
@ Optimal motion of the resource follows the geodesic

@ Optimal motion of resource particles decouples: each resource particle
only requires knowledge of its assigned demand particle

This problem is “nice” because:

@ We can turn it into an equivalent problem with a lot of structure

What can we learn from this?
@ Exploiting problem structure can go a long way

@ Geometric structure can be very powerful
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Thanks for Watching!

Questions?
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